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Figure 1. Example 360◦panoramics videos from all 28 scene categories.

Introduction
This document provides supplementary materials for the
main paper. Figure 1 offers a glimpse of all 28 scene cat-
egories of our 360+x Dataset. Specifically, section 1 de-
scribes the data organisation in detail, while section 2 ex-
plains the procedure used to select the scene labels and the
temporal segmentation labels. More statistics of the pro-
posed dataset are presented in section 3. The ethical use of
the dataset and the author’s statement are discussed in sec-
tion 4. Self-supervised methods and modality feature fusion
methods employed in our work are introduced in section
5 and section 6, respectively. Additional experimental re-
sults are presented in section 7, and more samples from the
dataset are shown in section 8. The social impact of the pro-
posed dataset and the limitations of this work are analysed
in section 9 and section 10, respectively. Potential future
work is discussed in section 11.

License. The 360+x dataset is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational Public License.

Author statement. The authors acknowledge that they
are fully responsible for any potential violations of rights,
ethical issues, or legal disputes related to their work. The

authors further confirm that they have obtained all necessary
permissions and licenses for the data used in the research.

1. 360+x Dataset Organisation
For each data instance, we provide a comprehensive set of
views, including:

• 360◦ panoramic view
• Third-person front view
• Egocentric binocular view
• Egocentric monocular view
For each view, we offer a variety of data modalities and

the original file, allowing for a more comprehensive under-
standing of the scene, which is structured as follows:

• Video
• Multi-channel audio
• Directional binaural delay
• Temporal segments label
Along with the data instance, we also provide accom-

panying metadata including scene category labels, textual
scene descriptions, weather conditions, capture time, and
GPS information. This provides an opportunity for explor-
ing a comprehensive understanding of the scene from vari-
ous angles.
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Accessibility. Large-scale data collection can present
challenges for researchers due to limitations in hardware re-
sources such as storage and computing power. To address
this, we offer a three-step solution:

• Partitioned data: We provide standardised mini-sets of
data for quick overviews and initial experimentation, allow-
ing researchers to explore the dataset without being over-
whelmed by its size.

• Reduced-resolution: We offer reduced-resolution ver-
sions of our extracted frame-by-frame images, which can be
used to speed up exploration of the data in the early stages
of research. The original high-resolution images are also
available for those who require them.

• Pre-computed features: We provide pre-computed fea-
tures such as video and audio features, which have been
extracted using the methods described in the main paper.
These features offer a convenient and efficient way for re-
searchers to access and analyse the data without having to
perform extensive processing.

2. Selection of Scene Label and Temporal Seg-
mentation Label

The scene labels in 360+x dataset aim to represent common
real-world environments and activities people routinely ex-
perience in daily life. During data collection, we strived
to capture diverse scenarios across different locations that
resemble natural experiences. The categories emerged or-
ganically from the range of spaces and events we were able
to access and record.

For the classification of database, it is generally based
on scenes [14, 18, 19, 19] or action behaviours [4, 6, 8, 10].
However, considering that scene locations and activities of-
ten overlap, for example, ‘speaking’ can occur in ‘dining &
food outlets’ or ‘indoor residential spaces’, and even in the
same location ‘campus’ may have various actions such as
‘walking’ and ‘speaking’. Our multi-modal data set is based
on video recordings of natural behaviours in natural scenes.
Each video contains rich naturally occurring behavioural
information and scene information, to annotate the video
more completely and efficiently, we divide the scene and
behavioural actions into two layers of labels: scene labels
and temporal segmentation labels.

Scene labels are based on the place where the scene oc-
curs. We learn from the places dataset [18], which extracts
401 scenes based on wordnet [7]. However, those scenes are
not all common in daily life scenes, such as ‘archaeological
excavation’, ‘server room’, etc. The division is also more
detailed, such as ‘indoor residential spaces’ can have mul-
tiple categories: ‘bedroom’, ‘living room’, ‘dining room’,
‘attic’, etc. Therefore, in order to more accurately fit daily
life, we put these 401 directories into the large language
model [9] for classification and summary, and then through
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Figure 2. Additional dataset indoor/outdoor statistics.

manual screening, we finally obtained 28 categories includ-
ing indoor and outdoor. After the scene categories were
confirmed, we collected several videos for each category,
considering a balanced contribution of weather, lightness
and captured locations.

Temporal segmentation labels are the behavioural activ-
ities that occur in the scene. We obtained the time segmen-
tation tags of the 360+x database based on the activity level
standard of ActivityNet [4] and combined them with the ac-
tual activities in the collected videos. Then we sampled
about 50 videos from each directory and performed label
pre-annotation. After about two rounds of pre-annotation,
we analysed the differences between labels and the length of
timeline coverage of each annotation, and then generated a
temporal segmentation labels dictionary. To capture the di-
versity and granularity of activities within each category, we
defined a total of 38 action instance labels covering specific
actions and behaviours. Finally, we selected three profes-
sional annotators to annotate all the videos in the database
according to the dictionary.

3. Additional Dataset Statistics
Beyond the action and scene categories mentioned in the
main paper section 3.3, we also include weather tags. As
illustrated in Figure 2(a), we collected data from both out-
door and indoor environments. For those purely indoor
scenes that cannot tell any weather conditions, we label
them as ‘indoor’ tag, while for outdoor scenes or some in-
door scenes that can tell the weather, we further categorise
them into ‘sunny’, ‘clear’, ‘cloudy’, ‘hazy’ and ‘rainy’. Fig-
ure 2(b) represents the balanced clip histogram distribution
of binaural delay in both indoor and outdoor environment.

4. Privacy and Ethics
We acknowledge data collectors have ethical obligations
and standards to uphold when conducting data collection
efforts. While specifics vary per site, three common obliga-
tions and guidelines have been followed:
1. Compliance with legal terms and consortium conditions

of use, specifically for research purposes only.



Figure 3. Elucidation of the self-supervised learning (SSL) techniques employed in our study: within SSL, audio is treated in tandem with
video frames. To illustrate, when the video speed is augmented by a factor of 2, the audio sample rate is attenuated by 2 (thus speeding
it up) to maintain synchronisation. Correspondingly, if the sequence of video clips is rearranged, the audio clips undergo a commensurate
reshuffling. The processing of ITD data mirrors this approach used for audio data.

2. Protection of participant confidentiality and privacy.
3. Avoidance of sensitive areas to prevent any potential

breaches of confidentiality.

Sensitive information processing. To protect the privacy
of individuals, we use an automated face-blurring tool, De-
face1, to redact personally identifiable information (PII)
from the videos. Deface employs the CenterFace [16] face
detection model to identify facial regions in frames, then
applies Gaussian blurring to mask each detected face.

While completely removing faces could maximise pri-
vacy, blurred faces retain some visual information and con-
text. The blurring parameters were tuned to balance privacy

1https://github.com/ORB-HD/deface

protection and data utility based on established practices
[2]. All videos were manually reviewed post-redaction to
catch any errors or missings detection.

Despite our efforts to maintain efficiency and consis-
tency, certain limitations exist. Factors such as occlusion,
lighting, and face angle can affect face detection accuracy,
and the blurring strength may be too weak or too strong
in some instances. Additionally, our process does not ad-
dress other forms of personally identifiable information like
voices and text. While not perfect, our approach does re-
duce the privacy risk compared to fully visible faces, and
allows the altered data to remain valuable for research pur-
poses.
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Figure 4. Illustration of Modality Fusion: The features from video, audio, and ITD are extracted utilizing I3D, VGGish, and ResNet-1D
correspondingly. Subsequently, these features are concatenated for each sub-task.

5. Explain of Self-supervised Learning

In this study, we utilise self-supervised learning (SSL) tech-
niques proposed in video pace (VP) prediction [12] and
clip order (CO) shuffle prediction [15] to pre-train models
for enhanced feature learning and subsequent task perfor-
mance. These two methods are originally tailored for video
data, and involve using speed perturbation or clip order per-
mutation on the visual content.

However, our dataset provides more modalities be-
yond merely video. To fully leverage the power of self-
supervised learning, we extend these methods to incorpo-
rate more modalities (i.e. audios and direction binaural de-
lay). Figure 3 depicts how SSL methods can be applied to
both video and audio modalities, while ensuring synchro-
nisation between them. For example, if the video playback
speed is altered (e.g. ×2), the corresponding audio sample
rate is changed accordingly (i.e. ×0.5) to maintain synchro-
nisation. Similarly, when the sequence order of video clips
is shuffled, the order of audio clips is also rearranged iden-
tically to preserve alignment. The direction binaural de-
lay data, which contains spatial audio information, under-
goes similar synchronised transformations during SSL pre-
training as the audio data. By treating all three modalities
(i.e. video, audio, and direction binaural delay) jointly and
applying transformations consistently across them, we en-
able cross-modal coordination and representation learning.

It is noteworthy that the VP and CO primarily focus
on leveraging temporal information as training guidance,
applying it either globally (pace) or locally (clip) to offer
distinct interventions to this temporal data. By combining
these interventions, there is potential to enhance the model’s
capability to capture global and local temporal dependen-
cies simultaneously. This integration, depicted in Figure 3,

is delineated as ‘combine clip order and pace prediction’ or
varied pace clip order (VP+PO) shuffle. This integration is
highlighted in our experiments detailed in the main paper
Tables 5 and 6, where noted benefits become evident.

In summary, a core aspect of our self-supervised mul-
timodal learning approach is ensuring aligned cross-modal
augmentations and fusing representations across video, au-
dio, and spatial audio domains. This provides a strong foun-
dation for the multi-modal benchmarks in our work.

6. Explain of Modalities Fusion

Simply concatenating the modalities without proper fusion
can lead to a reduction in the benefits of multi-modal learn-
ing, as pointed out in [13]. Therefore, instead of solely
concatenating modality features, we leverage a hierarchi-
cal attention mechanism for multi-modality integration as
depicted in Figure 4. To simplify the illustration, we use V
- video, A - audio, and D - direction binaural delay data as
simplified symbols representing each modality.

In nature of multi-modality, the direction binaural delay
data contains spatial audio information, and audios can in-
dicate the rich movement region to the videos. We design
the hierarchical attention with D as an attention query to
direct focused attention towards A. Afterwards, A is also
leveraged as a query to attentively interact with V. The ex-
perimental supports for selecting A as the attention medium
is also presented in section 7.2. This hierarchical design en-
ables the encapsulation of directional and spatial informa-
tion into audio and video modalities, creating a synergistic
representation of the underlying data that integrates the fea-
tures across modalities.



7. More Experiment Results
7.1. Temporal Action Localisation

As a supplement to section 4.3 in the main paper, we expand
the experiments to variations of views, as detailed in Table
1. The results therein show a trend consistent with those
observed in Table 2 in the main paper, indicating that the
utilisation of multiple views contributes positively.

Table 1. TAL results for different views using TriDet, with ex-
tractors being I3D pretrained on 360+x. The lines with a grey
background were reported in the main paper.

Selected View
V V+A V+A+D

mAP mAP mAP
Avg.

mAP mAP mAP
Avg.

mAP mAP mAP
Avg.

@0.5 @0.75 @0.95 @0.5 @0.75 @0.95 @0.5 @0.75 @0.95

Egocentric Only 12.5 9.8 4.3 8.9 (±0.0) 16.2 12.3 4.6 11.0 (±0.0) 16.9 12.7 4.7 11.4 (±0.0)

Front Only 19.7 14.4 5.2 13.1 (+4.2) 24.5 17.6 6.1 16.1 (+5.1) 25.6 18.0 6.2 16.6 (+5.2)

360◦Only 21.1 15.3 5.5 14.0 (+5.1) 26.4 18.5 6.9 17.3 (+6.3) 27.1 18.7 7.0 17.6 (+6.2)

360◦+ Egocentric 21.4 15.8 5.7 14.3 (+5.4) 27.3 19.2 7.2 17.9 (+6.9) 27.8 19.6 7.2 18.2 (+6.8)

360◦+ Front 24.2 16.8 6.1 15.7 (+6.8) 28.1 20.3 7.3 18.6 (+7.6) 28.2 20.8 7.3 18.8 (+7.4)

360◦+ Front + Ego 24.6 17.1 6.3 16.0 (+7.1) 28.2 20.6 7.3 18.7 (+7.7) 28.8 21.0 7.4 19.1 (+7.7)

7.2. Cross-modality Retrieval

As we mentioned in the main paper section 4.4, we are em-
barking on a series of retrieval tasks that traverse the audio,
video and directional time delay modalities. This section
provides more experimental results on Query-to-Audio and
Query-to-Directional information results.

Q-to-Audio retrieval results. Table 2 illustrates the re-
trieval results for the retrieving audios. In this table, the
notation V+D represents a set of video and directional bin-
aural features that are trained independently. Additionally,
the superscript * indicates that these features are collabora-
tively trained rather than being treated separately.

The query V+D exhibits superior audio retrieval perfor-
mance, surpassing the use of videos alone. Additionally, the
suppression of (V+D)* suggests that the modalities V and D
are not directly related, which forms the foundation for de-
signing our hierarchical attention mechanism that employs
audio modality as the attention medium.

Table 2. Q-to-Audio retrieval results. The superscript* indicates
modalities are co-trained. Recall reported with rank in {1, 5, 10}.

Query Modality R1 (%) R5 (%) R10 (%)

V 54.17 (±0.00) 68.32 (±0.00) 80.72 (±0.00)

V + D 66.36 (+12.19) 76.78 (+8.46) 88.59 (+7.87)

(V + D)* 59.21 (+5.04) 72.65 (+4.33) 86.84 (+6.21)

Q-to-Directional feature retrieval results. Table 3 illus-
trates the retrieval results for the Query modality retrieve
directional features. In this table, the notation V+A repre-
sents video and audio, respectively. The query (V+A)* ex-
hibits better directional feature retrieval performance than
other queries. The effective retrieval results across modal-
ities demonstrate the high quality and compliance with the
modalities of the 360+x dataset.

Table 3. Q-to-Directional binaural delay retrieval results. The su-
perscript* indicates modalities are co-trained. Recall reported with
rank in {1, 5, 10}.

Query Modality R1 (%) R5 (%) R10 (%)

V 6.02 (±0.00) 17.64 (±0.00) 25.93 (±0.00)

V + A 54.15 (+48.13) 76.10 (+58.46) 90.32 (+64.39)

(V + A)* 67.26 (+61.24) 89.47 (+71.83) 94.26 (+68.33)

7.3. Modality Fusion

We also explored alternative modality fusion approaches,
such as direct concatenation of modalities, concatenation
followed by a linear layer, concatenation followed by self-
attention, and varied hierarchical structures of hierarchical
attention. The performance of these fusion methods on
Temporal Action Localisation is systematically compared
and presented in Table 4, suggesting the effectiveness of
our presented hierarchical attention approach.

Table 4. TAL with TriDet, I3D pretrained on 360+x, under the
setting 360+Egocentric+F and V+A+D. X→Y: X as the query and
Y as the key-value pair in the attention mechanism.
Feature Fusion mAP@0.5 mAP@0.75 mAP@0.95 Avg.

Concatenation 19.2 (±0.0) 14.6 (±0.0) 5.3 (±0.0) 13.0 (±0.0)

Concat + Linear Layer 21.2 (+2.0) 15.1 (+0.5) 5.5 (+0.2) 13.9 (+0.9)

Concat + Self-Attention 26.9 (+7.7) 18.9 (+4.3) 6.8 (+1.5) 17.5 (+4.5)

D→V + Concat A 17.8 (−1.4) 13.8 (−0.8) 5.2 (−0.1) 12.3 (−0.8)

D→A + Concat V 24.6 (+5.4) 17.2 (+2.6) 6.2 (+0.9) 16.0 (+3.0)

A→D + Concat V 20.5 (+1.3) 14.9 (+0.3) 5.7 (+0.4) 13.7 (+0.7)

A→V + Concat D 28.3 (+9.1) 20.6 (+6.0) 7.3 (+2.0) 18.7 (+5.7)

Hierarchical Attention, D→A, A→V 28.8 (+9.6) 21.0 (+6.4) 7.4 (+2.1) 19.1 (+6.0)

7.4. Migration of the Dataset Pre-training Model

Regarding the integration with the EPIC-Kitchens [3]
dataset, we follow the experiment setup in [17] and deploy
the SlowFast architecture [5] for feature extraction. The
outcomes of the experimentation, centred around the verb
and noun sub-tasks within the EPIC-Kitchens dataset, are
concisely displayed in Table 5 and Table 6. These tables
provide a comprehensive overview of mean average pre-
cision (mAP) scores across a spectrum of IoU thresholds,
spanning from 0.1 to 0.5.

In accordance with the EPIC-Kitchens [3], which of-
fers a large amount of monocular egocentric data, we solely
employ monocular egocentric information from the 360+x
for this section, thereby ensuring a consistent and reliable
basis for experimental analysis. Examining Table 5 and
Table 6, the 360+x dataset extractor does not perform as
well as the EPIC-Kitchens model when trained only with
EPIC-Kitchens. This is likely due to the fact that the
EPIC-Kitchens model is better suited for the EPIC-Kitchens
dataset. However, pre-training with the 360+x dataset fol-
lowed by fine-tuning on EPIC-Kitchens [3] results in en-
hanced performance when compared with training solely
on the EPIC-Kitchens dataset. This observation suggests
that despite the disparate data formats inherent in the two



Table 5. The test outcomes for the verb sub-task within the EPIC-Kitchens dataset [3]. We utilise the ego-centric monocular modality for
training as the sole source of feature extraction. PT: pre-train, FT: Fine-tune.

Feature Extractor mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP0.7 Avg.

EPIC-Kitchens dataset [1] 28.6 (±0.0) 27.4 (±0.0) 26.1 (±0.0) 24.2 (±0.0) 20.8 (±0.0) 25.4 (±0.0)

360+x Dataset 28.1 (−0.5) 27.1 (−0.3) 25.9 (−0.2) 24.3 (+0.1) 21.2 (+0.4) 25.3 (−0.1)

360+x (PT), Epic-Kitchens (FT) 28.8 (+0.2) 27.8 (+0.4) 26.5 (+0.4) 24.9 (+0.7) 21.7 (+0.9) 25.9 (+0.5)

Table 6. The test outcomes for the noun sub-task within the EPIC-Kitchens dataset [3]. We utilise the ego-centric monocular modality for
training as the sole source of feature extraction.

Feature Extractor mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP0.7 Avg.

EPIC-Kitchens dataset [1] 27.4 (±0.0) 26.3 (±0.0) 24.6 (±0.0) 22.2 (±0.0) 18.3 (±0.0) 23.8 (±0.0)

360+x Dataset 26.9 (−0.5) 26.0 (−0.3) 24.4 (−0.2) 22.3 (+0.1) 18.6 (+0.3) 23.7 (−0.1)

360+x (PT), Epic-Kitchens (FT) 27.9 (+0.5) 26.9 (+0.6) 25.4 (+0.8) 23.2 (+1.0) 19.3 (+1.0) 24.5 (+0.7)

datasets, pre-training on the 360+x dataset holds the poten-
tial to contribute to improved performance within the EPIC-
Kitchens context [3].

7.5. Transformer-Based Backbone

We used I3D as our backbone as it was widely adopted
in video understanding tasks in the literature. However,
we further explore more contemporary Transformer-based
models as our backbone, e.g. VideoMAE [11], pretrained
on the Kinetics dataset, akin to the I3D model setting in the
main paper. Table 7 reports the performance on temporal
action localisation using VideoMAE. Compared to the re-
sults in Table 3 in the main paper (i.e. the greyed line I3D in
Table 7), Transformer shows better performance. Addition-
ally, this experiment further validates the impact/benefits of
various views and modalities.

Table 7. TAL using TriDet with extractors being Transformer-
based model pretrained on kinetics. The greyed line was reported
in the main paper using I3D extractor, for reference.

Selected View
V V+A

mAP mAP mAP
Avg.

mAP mAP mAP
Avg.

@0.5 @0.75 @0.95 @0.5 @0.75 @0.95

360◦Only, with I3D 16.7 (±0.0) 10.1 (±0.0) 4.8 (±0.0) 10.5 (±0.0) 23.6 (±0.0) 17.2 (±0.0) 6.4 (±0.0) 15.7 (±0.0)

360◦Only 17.1 (+0.4) 13.4 (+3.3) 5.2 (+0.4) 11.9 (+1.4) 25.9 (+2.3) 18.5 (+1.3) 6.1 (−0.3) 16.8 (+1.1)

360◦+ Egocentric 16.9 (+0.2) 13.1 (+3.0) 5.0 (+0.2) 11.7 (+1.1) 26.4 (+2.8) 19.0 (+1.8) 6.2 (−0.2) 17.2 (+1.5)

360◦+ Front 19.5 (+2.8) 16.3 (+6.2) 5.6 (+0.8) 13.8 (+3.3) 27.6 (+4.0) 21.2 (+4.0) 6.5 (+0.1) 18.4 (+2.7)

360◦+ Front + Ego 19.2 (+2.5) 15.8 (+5.7) 5.4 (+0.6) 13.5 (+2.9) 27.8 (+4.2) 21.7 (+4.5) 6.6 (+0.2) 18.7 (+3.0)

8. More Data Examples
Here we provide additional examples of the data (Figures 5
∼ 32) to show a better understanding of the content and
quality of the 360+x Dataset.

9. Social Impact
Our contribution has the potential to positively impact scene
understanding through multi-modality learning. The pro-
posed 360+x Dataset provides the research community with
a multi-view perspective with rich modalities for scene un-
derstanding accompanied by rigorous privacy and ethics

standards. Additionally, it offers a diversity and density
of activities and reproducible benchmarks for technical ad-
vances in scene understanding and beyond.

We acknowledge that large-scale data collection with in-
adequate oversight could raise privacy and ethical concerns.
Therefore, we intend to hinder potential negative applica-
tions by making 360+x data available only for users who
sign a license agreement with the statement enumerating the
allowable uses of the data.

10. Limitations
Our dataset aims to encompass various aspects of daily life
to reflect the real world, yet we acknowledge that it still
possesses certain biases and cannot fully represent all as-
pects of the real world. Despite our efforts to collect mas-
sive everyday videos from geographically and demograph-
ically diverse sources, the current 28 scenes and 15 cities
are still far from complete coverage of the full spectrum of
everyday life. Furthermore, while we have included footage
from rural and field locations, the majority of the videos re-
main concentrated in urban or college town areas, resulting
in a biased representation of reality.

Another limitation pertains to the potential for biases and
noise in our data collection procedures. The unscripted na-
ture of video capturing can introduce inconsistency noise
since collectors might choose scenes based on their personal
interests, leading to an incomplete or biased depiction of
daily experiences. Additionally, the video capturing results
are also susceptible to the location of the recorder, which
may introduce geometrical bias.

Finally, there remains the potential for temporal labelling
bias. While we have taken steps to minimise bias through
multiple annotator merging, there still exists the possibil-
ity of variations in interpretations of the scene or temporal
activities due to individual differences in knowledge back-
grounds and natural language use. This can result in subtle



yet potentially significant biases in the language-based nar-
rations and action boards.

11. Future Work
The 360+x dataset is a collaborative project aimed at driv-
ing forward the development of foundational AI research
in the realm of panoramic multi-modal machine perception
and scene understanding. We actively seek and encourage
global collaborations with researchers and participants from
diverse and underrepresented regions, as their contributions
are critical for capturing the richness and diversity of daily
life activities. Therefore, we have developed our data col-
lection and annotation methods to be comprehensive and
transparent, allowing researchers from diverse backgrounds
to participate in expanding the diversity and quality of the
dataset.

In addition to the current benchmarks, we plan to expand
the scope of our dataset to encompass other video-audio
scene understanding tasks such as audio-visual diarization,
scene querying, pre/post conditions, and forecasting, which
will further advance the state-of-the-art techniques in this
field. However, our current dataset is lacking in spatial-
temporal localisation of objects, actions, and audio sources,
which we are currently working to address through the aug-
mentation of our labelling process. Although we have made
significant progress, the substantial annotation workload
has postponed the completion of this task. Spatial anno-
tations will be included in a future update.

To ensure the long-term utility of the dataset, we com-
mit to providing regular updates and maintenance. This in-
cludes verifying and correcting any issues related to data
accessibility and integrity, as well as expanding the dataset
with new content to maintain its relevance with the latest
advancements and challenges in academia and industry.
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Figure 5. Frame examples in the category of Agriculture & Rural
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Figure 6. Frame examples in the category of Artistic Spaces
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Figure 7. Frame examples in the category of Bars & Nightlife
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Figure 8. Frame examples in the category of Dining & Food Outlets
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Figure 9. Frame examples in the category of Elevators & Escalators
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Figure 10. Frame examples in the category of Historic & Religious Sites
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Figure 11. Frame examples in the category of Hotel & Temporary Stay
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Figure 12. Frame examples in the category of Indoor Educational Spaces
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Figure 13. Frame examples in the category of Indoor Entertainment Venues
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Figure 14. Frame examples in the category of Indoor Residential Spaces
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Figure 15. Frame examples in the category of Indoor Shops & Retail & Commercial
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Figure 16. Frame examples in the category of Indoor Sports Venues
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Figure 17. Frame examples in the category of Kitchen
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Figure 18. Frame examples in the category of Nature
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Figure 19. Frame examples in the category of Open Public Spaces
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Figure 20. Frame examples in the category of Outdoor Commercial & Markets Outside
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Figure 21. Frame examples in the category of Outdoor Residences & Living
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Figure 22. Frame examples in the category of Outdoor Sports & Athletic Fields
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Figure 23. Frame examples in the category of Outdoor Transportation
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Figure 24. Frame examples in the category of Parks & Recreational Areas
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Figure 25. Frame examples in the category of Public Gathering & Conference Spaces
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Figure 26. Frame examples in the category of Scientific Interior Space
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Figure 27. Frame examples in the category of Storage & Utility
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Figure 28. Frame examples in the category of Transportation Interiors
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Figure 29. Frame examples in the category of Transportation Stops
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Figure 30. Frame examples in the category of Urban Constructions & street
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Figure 31. Frame examples in the category of Waterfronts & Water Bodies
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Figure 32. Frame examples in the category of Workspaces
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