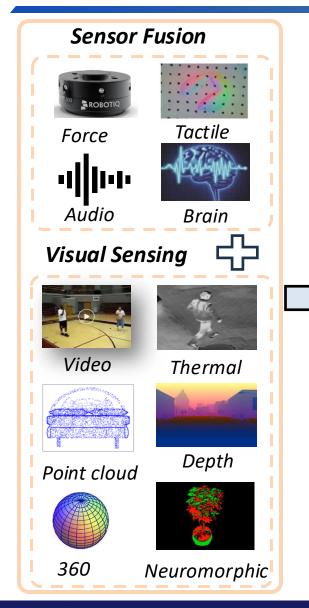
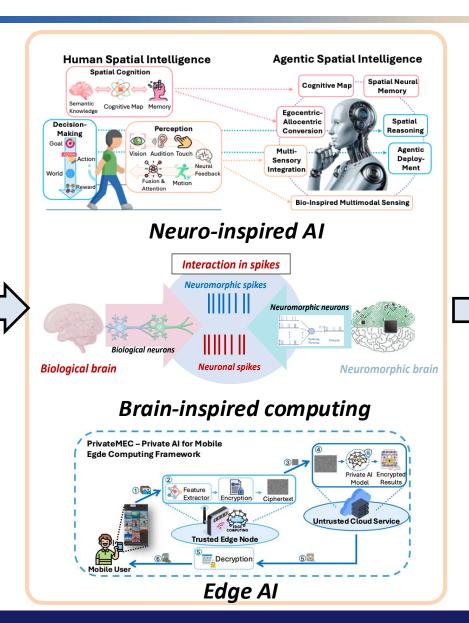
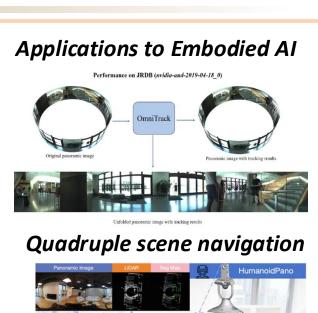
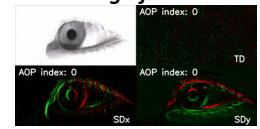


360 Vision in the Foundation Al Era: Principles, Methods, and Future Directions


Asst Prof Addison, Wang Lin


BioRAI Lab, School of Electrical and Electronic Engineering, NTU-Singapore linwang@ntu.edu.sg


https://dr.ntu.edu.sg/cris/rp/rp02550


Overview of Our Research

Sensor design for humanoid

Sensation/Emotion for Robot

360 Cameras

(a) ONE X2

(c) 360 CAM

(b) Titan

(d) GoPro Omni

What's different for 360 cameras?

Perspective Image

Captured with the iPhone 11

Some drawbacks:

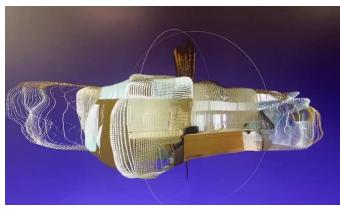
- ✓ Limited Field-of-view
- ✓ Weak to capture the 3D information

360 Image Equirectangular projection (ERP)

Captured with the THETA 360 camera

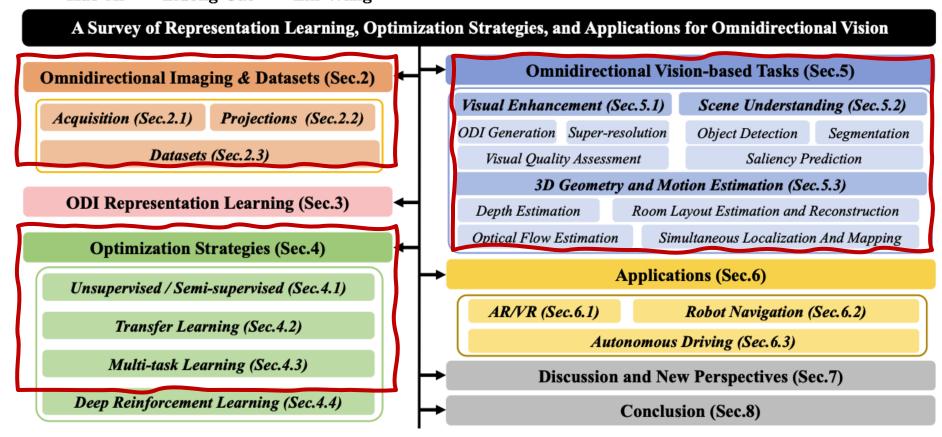
Some advantages:

- ✓ Large Field-of-view (360x180)
- ✓ Strong immersivity and more realism


Applications of 360 Cameras

VO & 3D Reconstruction

Robotics and self-driving


VR & Eye-tracking

Huang et al, 360VO: Visual Odometry Using A Single 360 Camera, RAL, 2022. Al et al. HRDFuse: Monocular 360°Depth Estimation by Collaboratively Learning Holistic-with-Regional Depth Distributions, CVPR, 2023. Lee et al. "SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 Images, CVPR, 2019.

Key Focus of This Talk

A Survey of Representation Learning, Optimization Strategies, and Applications for Omnidirectional Vision

Hao Ai ¹ · Zidong Cao ¹ · Lin Wang ^{1,2, ⊠}

Table of Contents

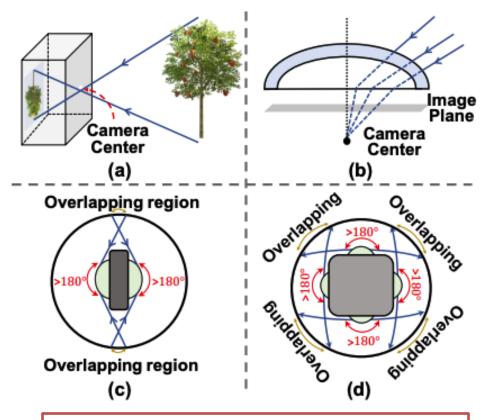
We are here now!

4

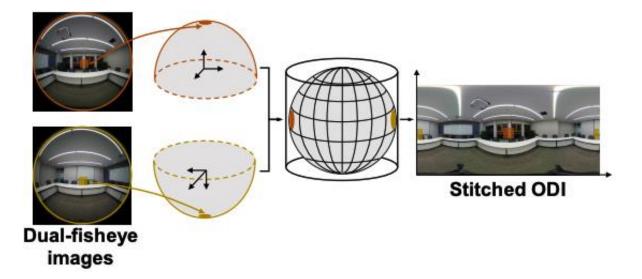
- Why 360 cameras?
- How to represent 360 images?

2

- Projection Fusion for 3D Vision
 - Bi-projection for depth estimation (CVPR 23,24)
 - Projection-agnostic foundation models (CVPR 25)


- Transfer Learning Methods for Scene Understanding
 - Domain Adaptation (CVPR 23)
 - Foundation Models (CVPR 24, NeurIPS 25, ICCV 25)

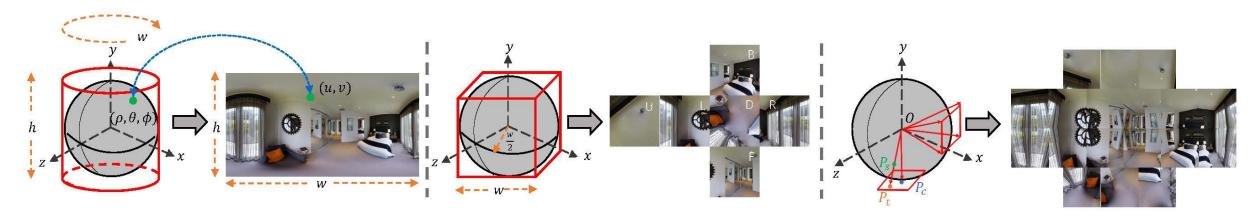
Л


- Hurdles and challenges
- Future directions

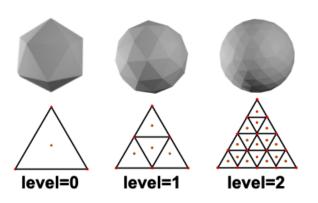
Imaging principles of several cameras

Assigning light from the camera's surrounding to a specific data structurea

- (a) Pinhole camera; (b) Fisheye camera;
- (b) 360° camera (dual-fisheye);
- (c) 360° camera (multi-fisheye)

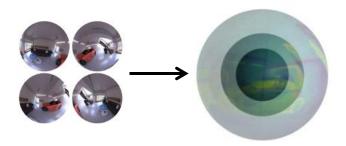

Stitching a pair of dual-fisheye images into an ERP image

$$\begin{vmatrix} \rho \\ \theta \\ \phi \end{vmatrix} = \begin{vmatrix} (x^2 + y^2 + z^2)^{1/2} \\ \arctan(x/z) \\ \arccos(y/\rho) \end{vmatrix}, \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} \rho \sin(\theta) \sin(\phi) \\ \rho \cos(\phi) \\ \rho \cos(\theta) \sin(\phi) \end{vmatrix}$$


Spherical Projection

Representation of 360 images

Due to spherical imaging, 360° Image owns multiple projection formats



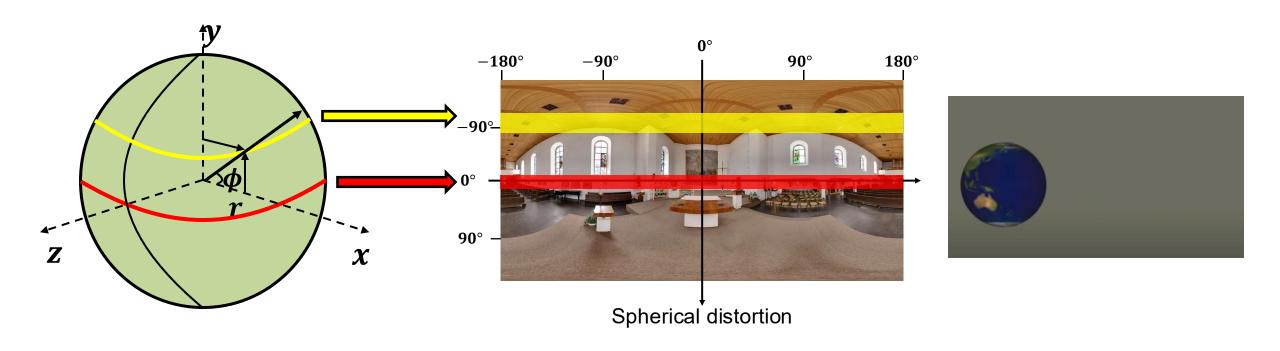
Equirectangular Projection (ERP)

Lcosahedron (ICOSAP)

Cubemap Projection (CP)

Cube MSI (IEEE RAL, 2025)

Tangent Projection (TP)



Vertical/horizontal Slicing

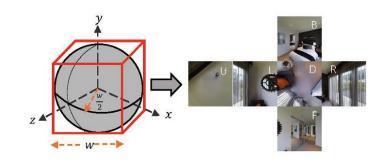
Representation of 360 images: ERP

ERP is the most common representation

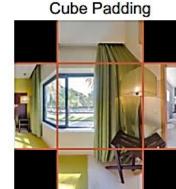
- ERP images contains severe spherical distortions, especially at two poles.
- Normal 2D-based convolution filters can not handle distortion problem.

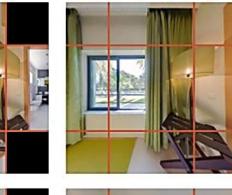
Representation of 360 images: Cubemap Projection

CP padding is needed


Spherical padding is important!

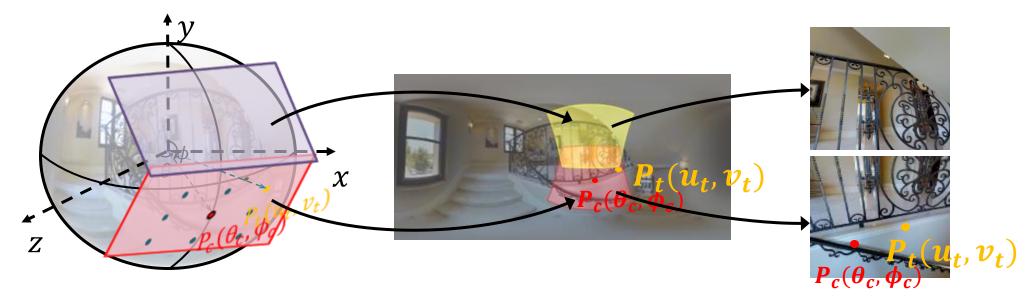
Cube padding


- Cube padding directly pads the feature of the connected faces.
- The values of four corners are undefined.


Spherical padding

- The padding area is calculated with spherical projection.
- Both the missing corner and inconsistency at the boundary can be addressed.

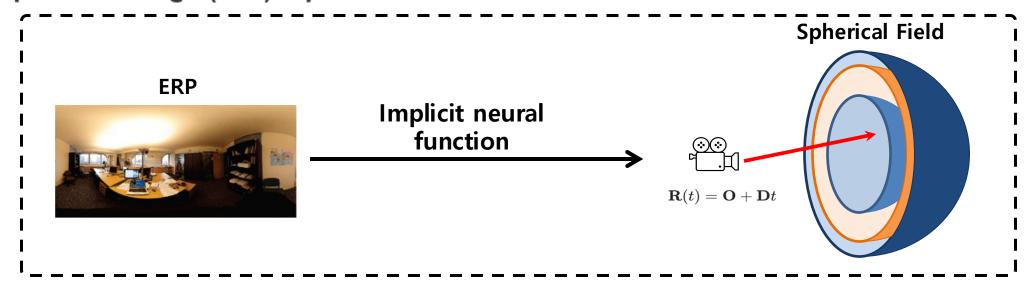
Spherical Padding



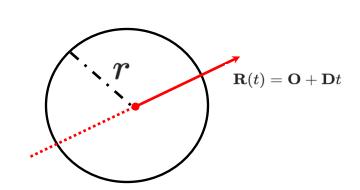
Representation of 360 images: Tangent Projection

A set of local planar image grids tangent to the subdivided icosahedron

ERP image

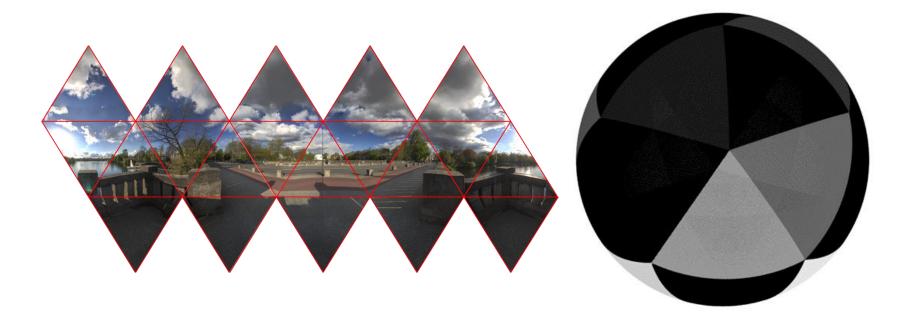

TP patches (N=10)

TP patches (N=18)


Representation of 360 images

Multi-spherical image (MSI) representation

Ray-sphere sampling from the constructed spherical field:


$$a=1,b=<\mathbf{O},\mathbf{D}>,c=<\mathbf{O},\mathbf{O}>-r^2$$

$$x=\frac{-b+\sqrt{b^2-4ac}}{2a}$$

$$\mathbf{R}(x)=\mathbf{O}+x\mathbf{D}$$

Representation of 360 images

Icosahedron-based 360° Image Representation

- Regular 20-sided polyhedron-based representation.
- A set of ray vectors equal to the number of pixels.

Advantage:

Much less irregularity

Takeaways

Which representation is good?

No one, not even one!

Project fusion might be a good solution!

(HRDFuse, CVPR2023; Elite360D, CVPR 2024; CUBE360, IEEE RAL 2025)

Table of Contents

We are here now!

Project fusion is a crucial to learn holistic-to-local semantic & geometric info from 360 data!

Why 360 cameras?

How to represent 360 images?

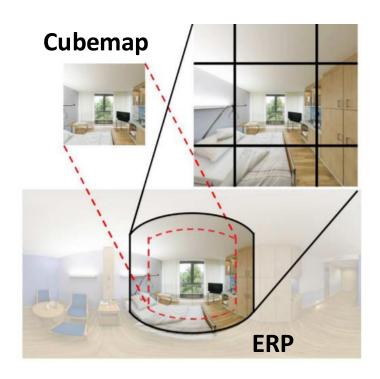
Projection Fusion for 3D Vision

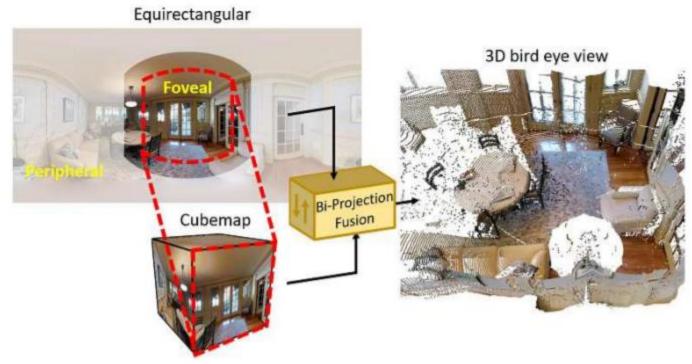
• Bi-projection for depth estimation (CVPR 23,24)

Projection-agnostic foundation models (CVPR 25)

• Transfer Learning Methods for Scene Understanding

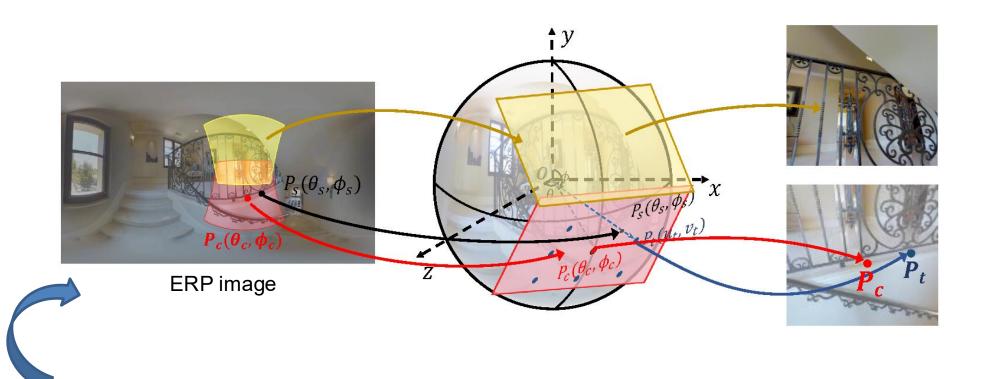
• Domain Adaptation (CVPR 23)

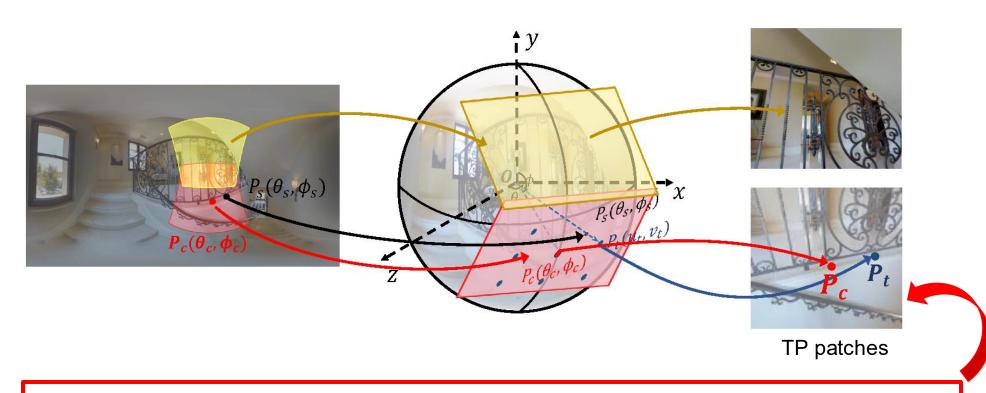

• Foundation Models (CVPR 24, NeurIPS 25, ICCV 25)


Hurdles and challenges

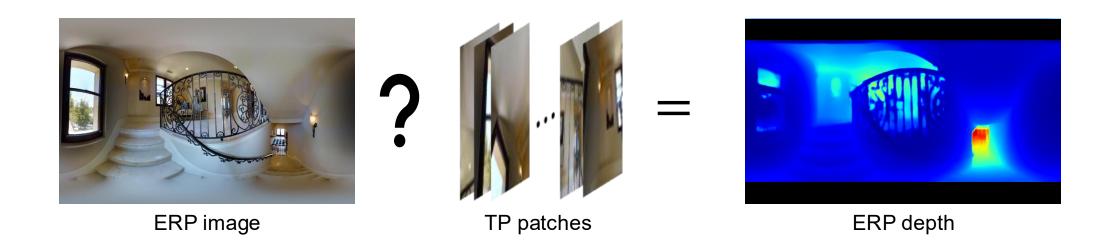
Future directions

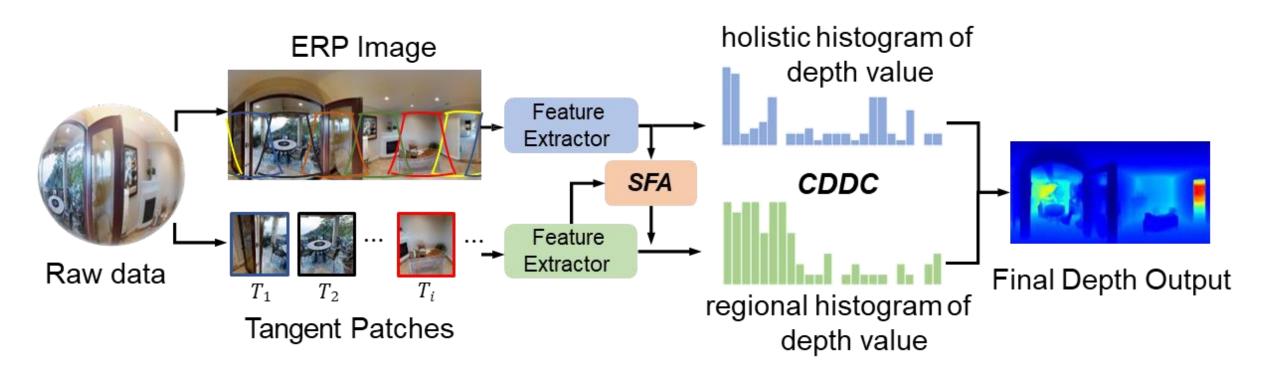
Is it possible to fuse both representations of 360 images?


Mimicking both peripheral and foveal vision of the human eye



ERP has the largest FoV compared to each face on the cubemap projection


- ERP to CP transform (E2C)
- CP to ERP transform (C2E)


ERP can provide holistic contextual information, but it is distorted.

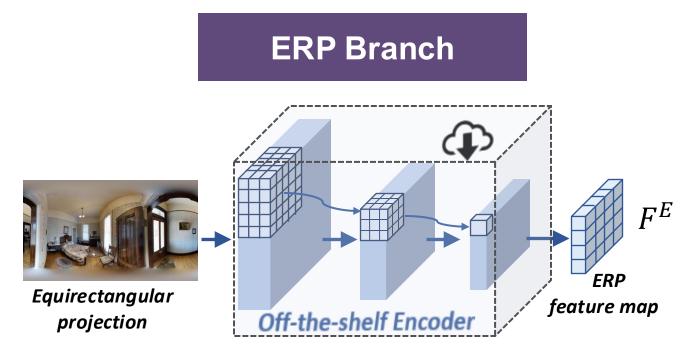
TP patches are less distorted but exist unavoidable overlapping areas between two neighboring TP patches.

How to better employ the holistic contextual Information in the distorted ERP images and regional structural Information in the less-distorted TP patches?

- SFA learns the similarities between the TP features and ERP features.
- CDDC learns the holistic and regional depth distribution histograms.

Datasets Method Patch size/FoV Abs Rel↓ Sq Rel↓ RMSE↓ RMSE(log)↓ δ₁ ↑ δ₂ ↑ δ₃ ↑										
Stanford2D3D BiFuse with fusion [41] -/- 0.1209 - 0.4142 - 0.8660 0.9580 0.9860 0.9860 0.9180 0.9860 0.9180 0.9811 0.9664 0.9882 0.9816 0.9811 0.9664 0.9882 0.9816 0.9818 0.9699 0.9924 0.9816 0.9816 0.9816 0.9816 0.9818 0.9616 0.9825 0.9816 0.98	Datasets	Method	Patch size/FoV	Abs Rel↓	Sq Rel \downarrow	RMSE↓	RMSE(log) ↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$
BiFuse with fusion [41]		FCRN [28]	_/_	0.1837	_	0.5774	-	0.7230	0.9207	0.9731
Stanford2D3D				0.1209	_	0.4142	-	0.8660	0.9580	0.9860
Stanford2D3D OmniFusion (2-iter) 30 256 × 256 / 80° 0.0950 0.0491 0.3474 0.1599 0.8988 0.9769 0.9924 PanoFormer* 35		UniFuse with fusion [23]	'	0.1114	_	0.3691	_	0.8711	0.9664	0.9882
PanoFormer* [35]	Stanford2D3D	OmniFusion (2-iter) [30]		0.0950	0.0491	0.3474	0.1599	0.8988	0.9769	0.9924
HRDFuse,Ours 256 × 256 / 80° 0.0935 0.0508 0.3106 0.1422 0.9140 0.9798 0.9927			. '	0.1131	0.0723	0.3557	0.2454	0.8808	0.9623	0.9855
FCRN [28]		HRDFuse,Ours	128 × 128 / 80°	0.0984	0.0530	0.3452	0.1465	0.8941	0.9778	0.9923
Matterport3D		HRDFuse,Ours	$256 \times 256 / 80^{\circ}$	0.0935	0.0508	0.3106	0.1422	0.9140	0.9798	0.9927
Matterport3D		FCRN [28]	-/-	0.2409	-	0.6704	_	0.7703	0.9714	0.9617
Matterport3D OmniFusion (2-iter) * [30] PanoFormer* [35] 256 × 256 / 80° 0.1007 0.0969 0.4435 0.1664 0.9143 0.9666 0.9844 0.9878 0.0966 0.9844 0.0764 0.4470 0.1650 0.8816 0.9661 0.9878 0.9878 0.0966 0.0981 0.0945 0.0966 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0945 0.0981 0.0965 0.0981 0.0965 0.0981 0.0965 0.0981 0.0965 0.0981 0.0965 0.0981 0.0966 0.0981 0.0968 0.9854 0.9967 0.9965 0.0965 0.0981 0.0966 0.0981 0.0966 0.0982 0.0965 0.0981 0.0966 0.0982 0.0965 0.0982 0.0965 0.0982 0.0965 0.0982 0.0965 0.0982 0.0965 0.0982 0.0965 0.0982 0.0965 0.0982				0.2048	_	0.6259	-	0.8452	0.9319	0.9632
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		UniFuse with fusion [23]	_/_	0.1063	-	0.4941	-	0.8897	0.9623	0.9831
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Matterport3D	OmniFusion (2-iter) * [30]	$256 \times 256 / 80^{\circ}$	0.1007	0.0969	0.4435	0.1664	0.9143	0.9666	0.9844
HRDFuse,Ours 256 × 256 / 80° 0.0981 0.0945 0.4466 0.1656 0.9147 0.9666 0.9842	-		_/	0.0904	0.0764	0.4470	0.1650	0.8816	0.9661	0.9878
FCRN [28]		HRDFuse,Ours	128 × 128 / 80°	0.0967	0.0936	0.4433	0.1642	0.9162	0.9669	0.9844
Mapped Convolution [15]		HRDFuse,Ours	$256 \times 256 / 80^{\circ}$	0.0981	0.0945	0.4466	0.1656	0.9147	0.9666	0.9842
BiFuse with fusion [41]		FCRN [28]	-/-	0.0699	0.2833	-	-	0.9532	0.9905	0.9966
3D60 UniFuse with fusion [23]		Mapped Convolution [15]		0.0965	0.0371	0.2966	0.1413	0.9068	0.9854	0.9967
ODE-CNN [10]	3D60	BiFuse with fusion [41]	_/_	0.0615	-	0.2440	-	0.9699	0.9927	0.9969
ODE-CNN [10]		UniFuse with fusion [23]	_/_	0.0466	-	0.1968	-	0.9835	0.9965	0.9987
HRDFuse,Ours 128 × 128 / 80° 0.0363 0.0103 0.1565 0.0594 0.9888 0.9974 0.9990				0.0467	0.0124	0.1728	0.0793	0.9814	0.9967	0.9989
		OmniFusion (2-iter) [30]	$128 \times 128 / 80^{\circ}$	0.0430	0.0114	0.1808	0.0735	0.9859	0.9969	0.9989
HRDFuse,Ours 256 × 256 / 80° 0.0358 0.0100 0.1555 0.0592 0.9894 0.9973 0.9990		HRDFuse,Ours	128 × 128 / 80°	0.0363	0.0103	0.1565	0.0594	0.9888	0.9974	0.9990
		HRDFuse,Ours	$256 \times 256 / 80^{\circ}$	0.0358	0.0100	0.1555	0.0592	0.9894	0.9973	0.9990

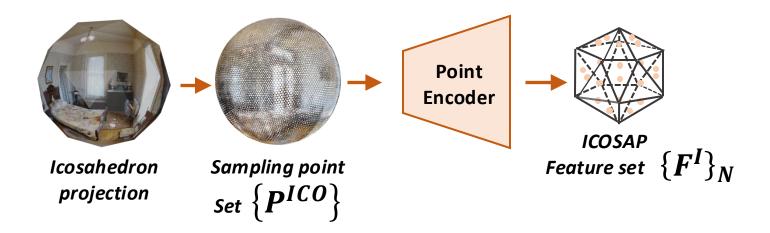
Problems


- 1. Merging plenty of patches is non-trivial process.
- computation The heavy memory and cost from crossprojection fusion.
- 3. Special encoders need to be designed to address distortion issues.

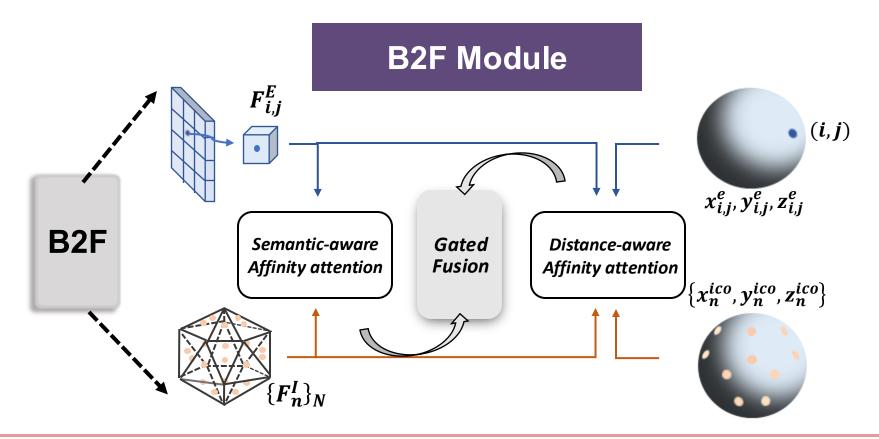
Best results compared with TP-based transformer approach!

Is it possible to use the off-the-shelf 2D encoders and learn computationally-cheap models?

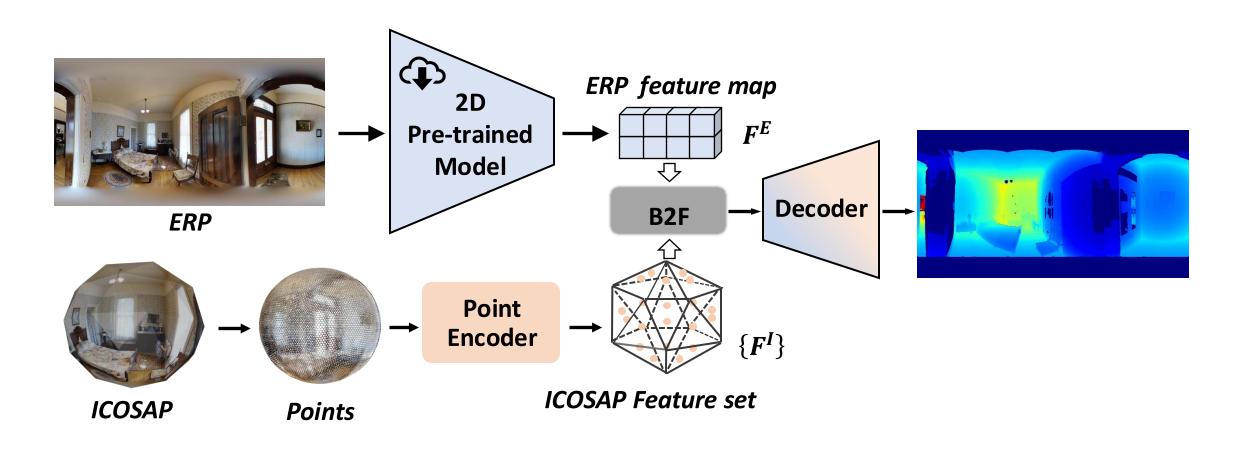
(Elite360D, CVPR 2024)


Take the best of ERP and ICOSAP by learning a representation from a local-withglobal perspective

Support a wide range of 2D pretrained models as encoder backbones.


Take the best of ERP and ICOSAP by learning a representation from a local-withglobal perspective

ICOSAP Branch


Represent ICOSAP sphere as the *point set*, which contain the spatial information and global perception.

B2F: Bi-Projection Bi-attention Fusion Module

Capture the <u>semantic- and distance-aware dependencies</u> between each ERP pixel feature and entire ICOSAP feature set

Take the best of ERP and ICOSAP by learning a representation from a local-withglobal perspective

Smallest model size with on par performance

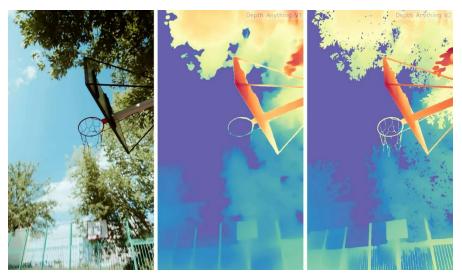
Datasets	Backbone	Method	Pub'Year	#Params (M)	#FLOPs (G)	Abs Rel↓	Sq Rel↓	RMSE↓	$\delta_1(\%)\uparrow$	$\delta_2(\%)\uparrow$	$\delta_3(\%)\uparrow$
	Transformer	EGFormer PanoFormer	ICCV'23 ECCV'22	15.39 20.38	66.21 81.09	0.1473 0.1051	0.1517 0.0966	0.6025 0.4929	81.58 89.08	93.90 96.23	97.35 98.31
ļ		Palloroffilei	ECC V 22	20.36	81.09	0.1031	0.0900	0.4929	09.00	90.23	90.31
		BiFuse	CVPR'20	35.80	165.66	0.1360	0.1202	0.5488	83.27	95.12	98.10
		UniFuse	RAL'21	30.26	62.60	0.1191	0.1030	0.5158	86.04	95.84	98.30
	ResNet-18	OmniFusion	CVPR'22	32.35	98.68	0.1209	0.1090	0.5055	86.58	95.81	98.36
		HRDFuse [†]	CVPR'23	26.09	50.59	0.1414	0.1241	0.5507	81.48	94.89	98.20
		Ours	-	15.43	45.91	0.1272	0.1070	0.5270	85.28	95.28	98.49
M3D		BiFuse	CVPR'20	56.01	199.58	0.1126	0.0992	0.5027	88.00	96.13	98.47
	ResNet-34	BiFuse++	TPAMI'22	52.49	87.48	0.1123	0.0915	0.4853	88.12	96.56	98.69
		UniFuse	RAL'21	50.48	96.52	0.1144	0.0936	0.4835	87.85	96.59	98.73
		OmniFusion	CVPR'22	42.46	142.29	0.1161	0.1007	0.4931	87.72	96.15	98.44
		HRDFuse [†]	CVPR'23	46.31	80.87	0.1172	0.0971	0.5025	86.74	96.17	98.49
		Ours	-	25.54	65.29	0.1115	0.0914	0.4875	88.15	96.46	98.74
		BiFuse	CVPR'20	253.08	775.24	0.1179	0.0981	0.4970	86.74	96.27	98.66
	ResNet-50*	UniFuse	RAL'21	131.30	222.30	0.1185	0.0984	0.5024	86.66	96.18	98.50
		Ours	-	42.99	170.11	0.1112	0.0980	0.4870	86.70	96.01	98.61

Data-specific models are diffic ult to be generalized to unseen scenes (outdoor and indoor)

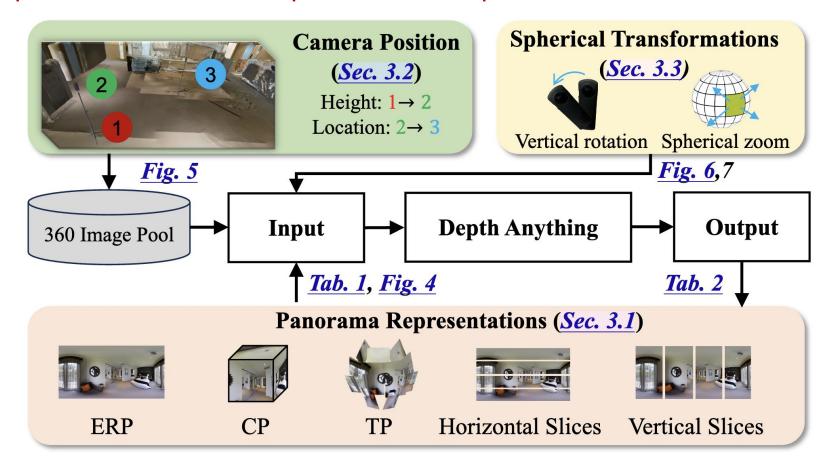
Can we get 360 foundation model?

Unseen outdoor scenes

Vision Foundation Models


Depth Anything v1 & v2

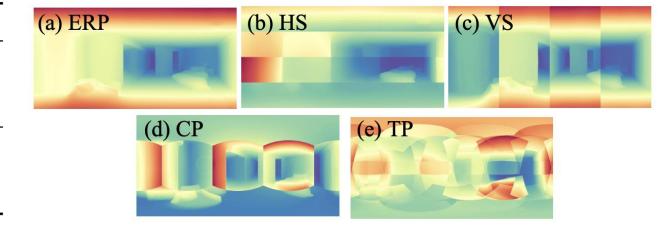
Utilize large amount of labeled and unlabeled data for training.



Do depth foundation models generalize well to 360 data across diverse scenes? (PanDA, CVPR 2025)

Leaderboard of Performance

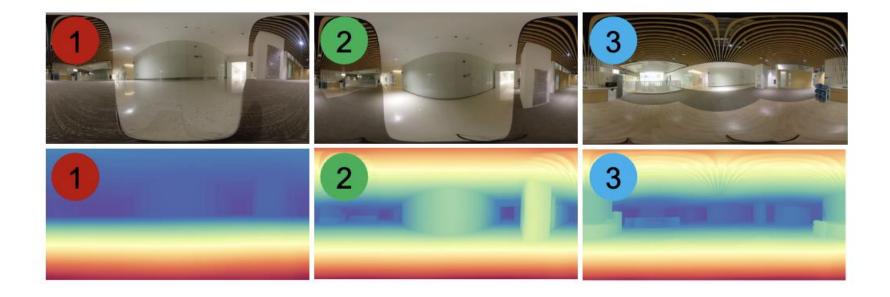
Check the spherical properties of Depth Anything for panoramas


Panoramic representations; Camera positions; and Spherical transformations.

Check which panoramic representation is better for Depth Anything

When the output space is ERP, ERP performs the best.

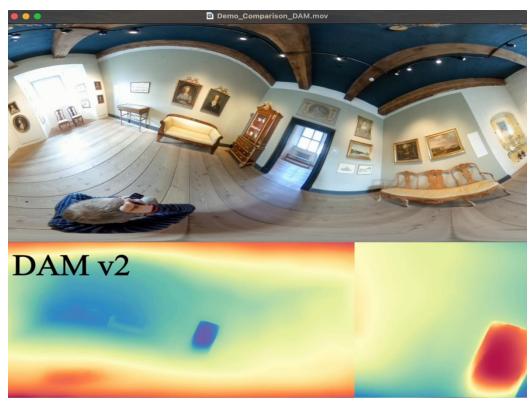
Method	Backbone	ERP	CP	TP	HS	VS
	ViT-S	0.1687		0.2289		0.1873
DAM v1 [49]	ViT-B	0.1629	0.2238	0.2251	0.2073	0.1889
	ViT-L	0.1614	0.2165	0.2046	0.2043	0.1858
	ViT-S	0.1692	0.2205	0.2317	0.2186	0.1962
DAM v2 [50]	ViT-B	0.1662	0.2249	0.2460	0.2149	0.2006
	ViT-L	0.1654	0.2238	0.2363	0.2101	0.1984


Check which panoramic representation is better for Depth Anything

- When the output space is other projections, ERP performs mostly the best.
- The prior knowledge in Depth Anything can address spherical distortion in some level.

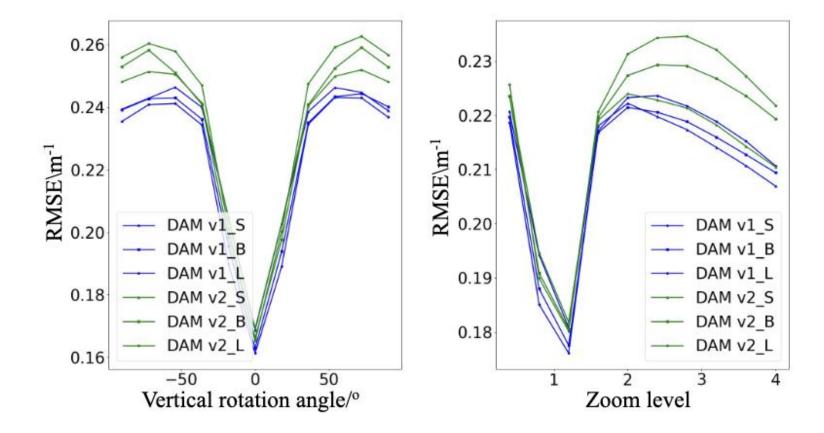
Inp. \rightarrow Out.	Equator	Pole	Average
$\begin{array}{c} ERP \rightarrow CP \\ CP \rightarrow CP \end{array}$	0.1129 0.1164	0.1201 0.1357	0.1153 0.1228
$\begin{array}{c} ERP \rightarrow TP \\ TP \rightarrow TP \end{array}$	0.1235 0.1416	0.1232 0.1492	0.1234 0.1441
$\begin{array}{c} ERP \to HS \\ HS \to HS \end{array}$	0.1322 0.1760	0.0965 0.1251	0.1145 0.1507
$ \begin{array}{c} ERP \to VS \\ VS \to VS \end{array} $	_	_	0.1438 0.1355

Check the camera position

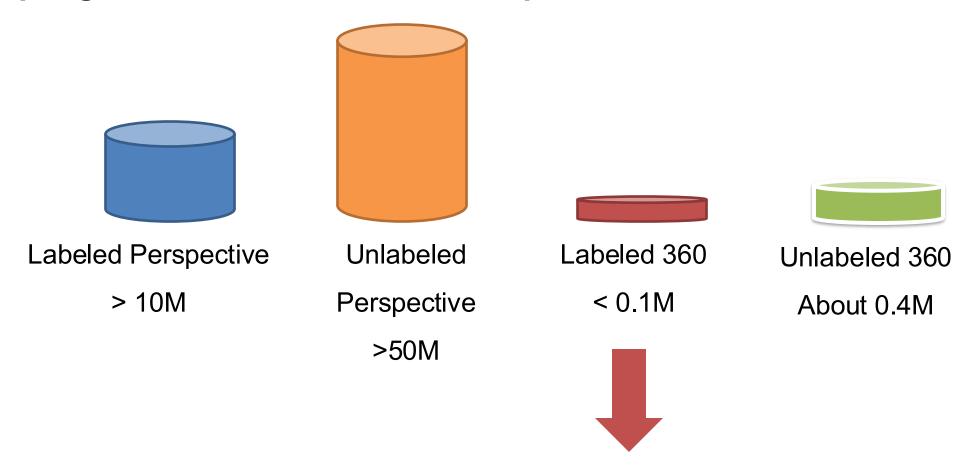

- 1. Near the ground, poor result due to large portion of polar regions;
- 2. Lift the height, better result;
- 3. Lift the height and move towards the interested objects, best result.

Check the robustness of Depth Anything for panoramas

Depth Anything performs poorly with spherical transformations.

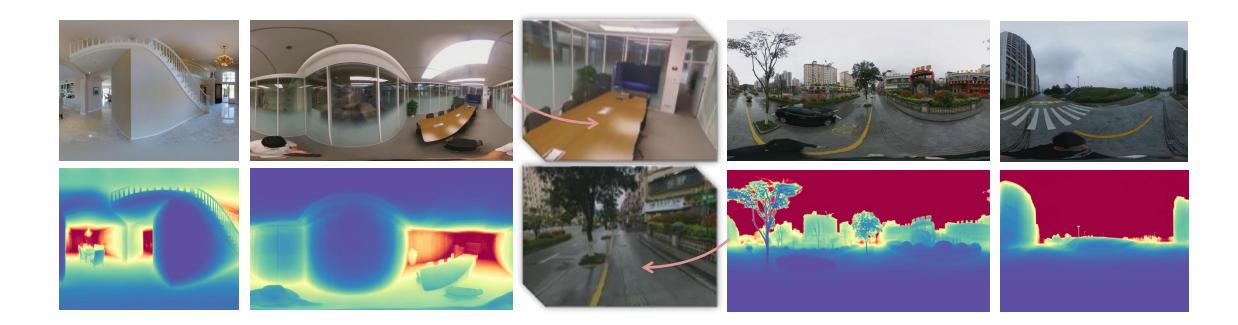


Finding 5

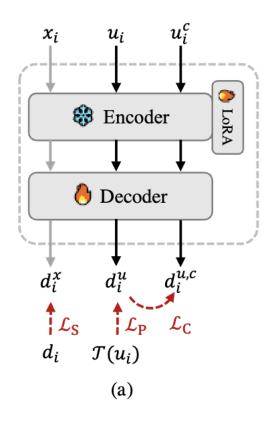

Check the robustness of Depth Anything for panoramas

The performance of Depth Anything changes rapidly.

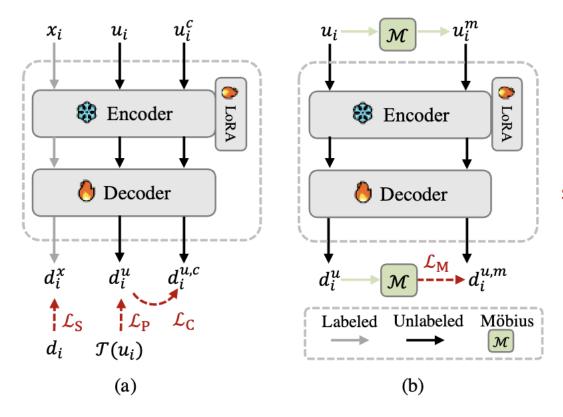
Hurdles for Achieving 360 Foundation Model


360 depth ground truth is difficult to acquire

Complicated annotation on curves, and require stitching

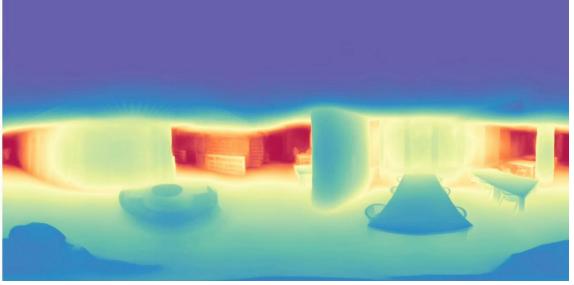

Achieving 360 Depth Anything

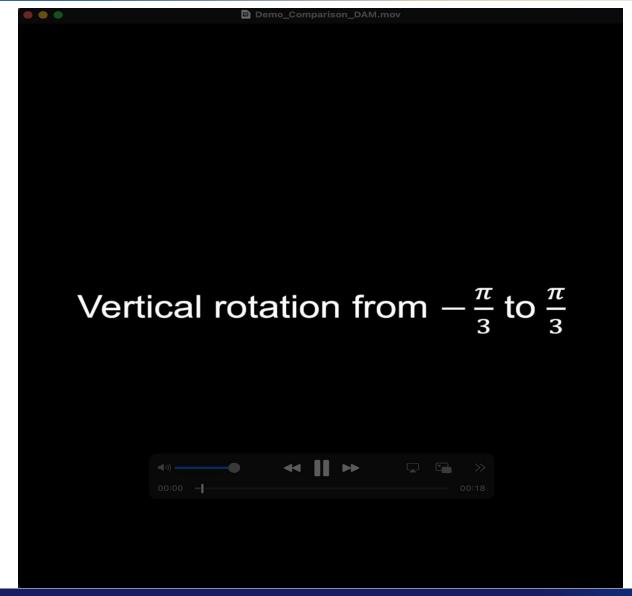
- Fine-tune Depth Anything to omnidirectional images with three stages of semi-supervised learning
- Teacher model training with synthetic panoramas;
- Collect 100k unlabeled real-world images and generate pseudo labels from the teacher model;
- Student model training using both labeled and unlabeled data.


Achieving 360 Depth Anything

- Semi-supervision pipeline
- Enforce consistency between the original unlabeled panorama and color-augmented ones.

Achieving 360 Depth Anything

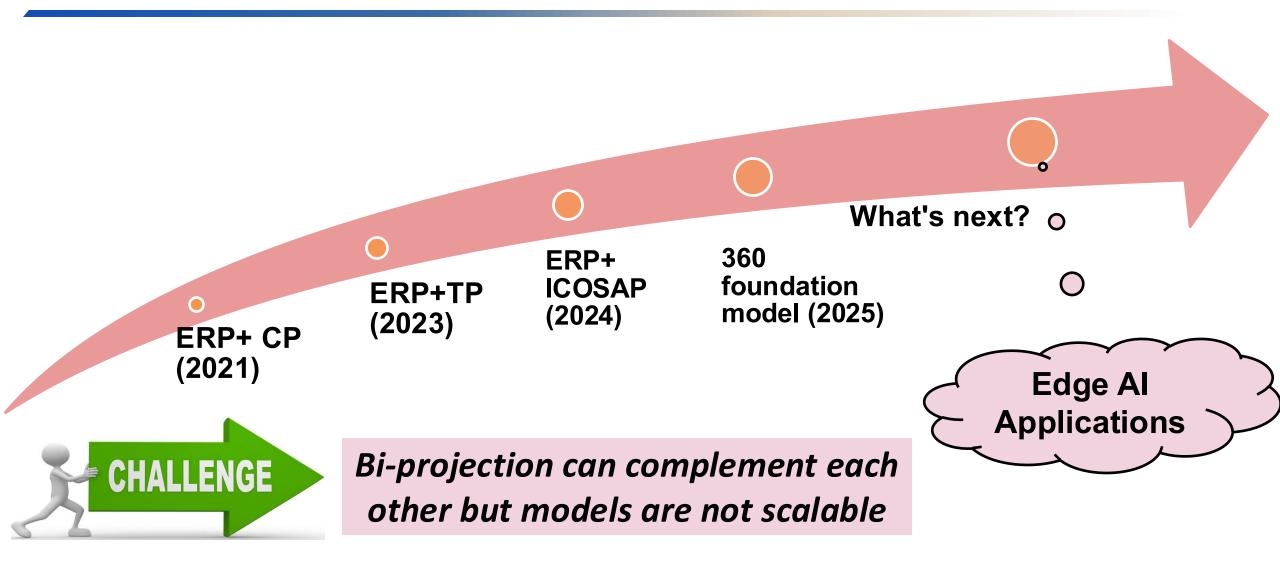

- Semi-supervision pipeline
- Enforce consistency between the original unlabeled panorama and color-augmented ones.
- Enforce consistency between the original unlabeled panorama and spherical-transformed ones.


Mobius transformation-based spatial augmentation (MTSA)

Open World Results

Open-World Results (Random Transformation)

New Approach to 360 Depth Anything



Scale in Data 31% Improvement

Scale in Data and Model 45% Improvement

Methods	$AbsRel \downarrow$	$RMSE \downarrow $	$\delta_1 \uparrow$	$\delta_2\uparrow$	$\delta_3\uparrow$
BiFuse [40]	0.1209	0.4142	86.60	95.80	98.60
UniFuse [17]	0.1114	0.3691	87.11	96.64	98.82
HoHoNet [38]	0.1014	0.3834	90.54	96.93	98.86
BiFuse++ [41]	_	0.3720	87.83	96.49	98.84
ACDNet [55]	0.0984	0.3410	88.72	97.04	98.95
PanoFormer [35]	0.1131	0.3557	88.08	96.23	98.55
HRDFuse [2]	0.0935	0.3106	91.40	97.98	99.27
S2Net [24]	0.0903	0.3383	91.91	97.82	99.12
Depth Anywhere [42]	0.1180	0.3510	91.00	97.10	98.70
PanDA-S	0.0762	0.2866	95.31	98.60	99.36
PanDA-B	0.0635	0.2682	95.84	98.95	99.51
> PanDA-L	0.0609	0.2540	96.82	99.05	99.52

Takeaways

Table of Contents

We are here now!

Takeaways: Learning strategies are important for efficient and effective 360-based scene understanding!

• Why 360 cameras?

How to represent 360 images?

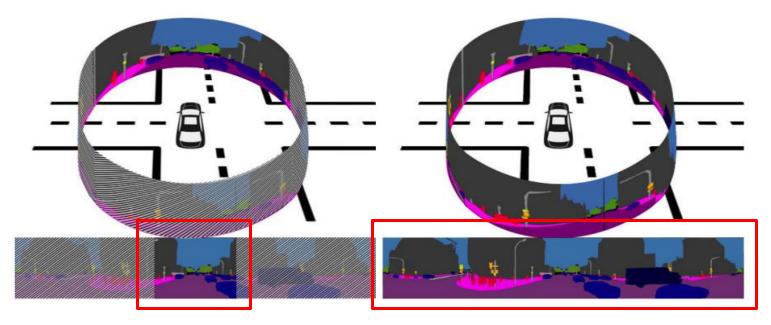
Projection Fusion for 3D Vision

• Bi-projection for depth estimation (CVPR 23,24)

Projection-agnostic foundation models (CVPR 25)

Transfer Learning Methods for Scene Understanding

Domain Adaptation (CVPR 23)


Foundation Models (CVPR 24, NeurIPS 25, ICCV 25)

Hurdles and challenges

Future directions

4

What can we benefit from 360 cameras?

Perspective vs 360 camera

360 cameras' comprehensive view of the vehicle's surroundings, eliminating blind spots and increasing situational awareness.

What can we benefit from 360 cameras?

Lack of labeled data (labeling 360 images is very time-consuming and labor-intensive)!

Pinhole image

Limited FoV

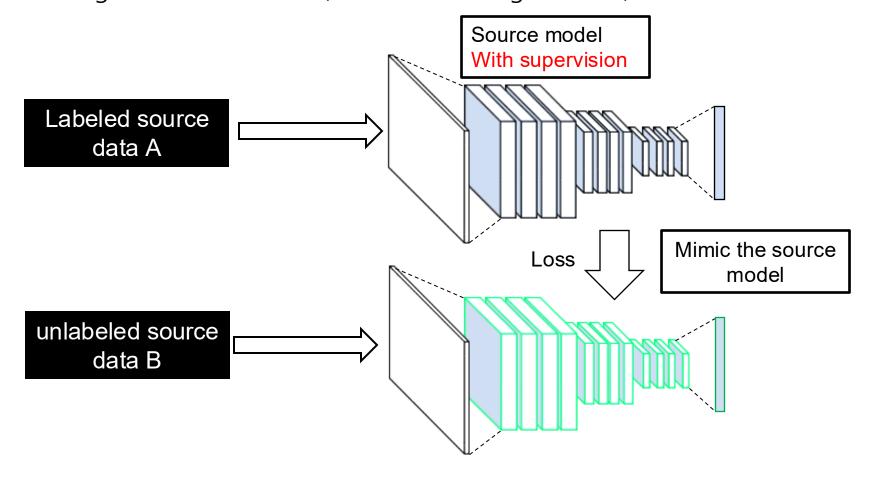
No Distortion

Sufficient Labels

Panoramic (ERP) image

Broader / 360 FoV

Severe Distortion


Scarce Labels

Unsupervised Domain Adaptation (UDA)

How it works?

- Transfer knowledge from a trained model on source data A to a new model for target data B.
- To improve training of the new model (on unlabeled target data B)

Research Questions

Synthetic

(GTA5)

Real Pinhole

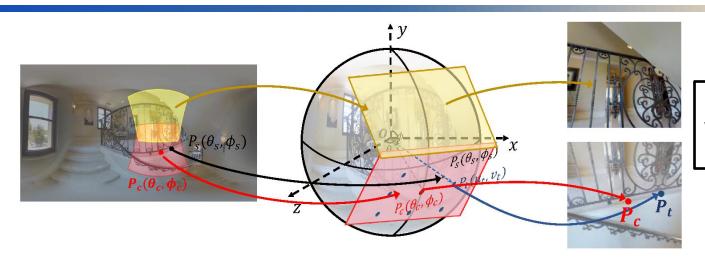
(Cityscapes)

Real Panorama

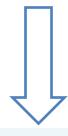
(DensePASS)

Domain Gaps: Style

Domain Gaps: Style & Distortion


Domain Gaps

Inherent Gaps: Diverse camera sensors and captured scenes


Format Gaps: Distinct image representation formats

Research question: How to alleviate these domain gaps?

Key Idea

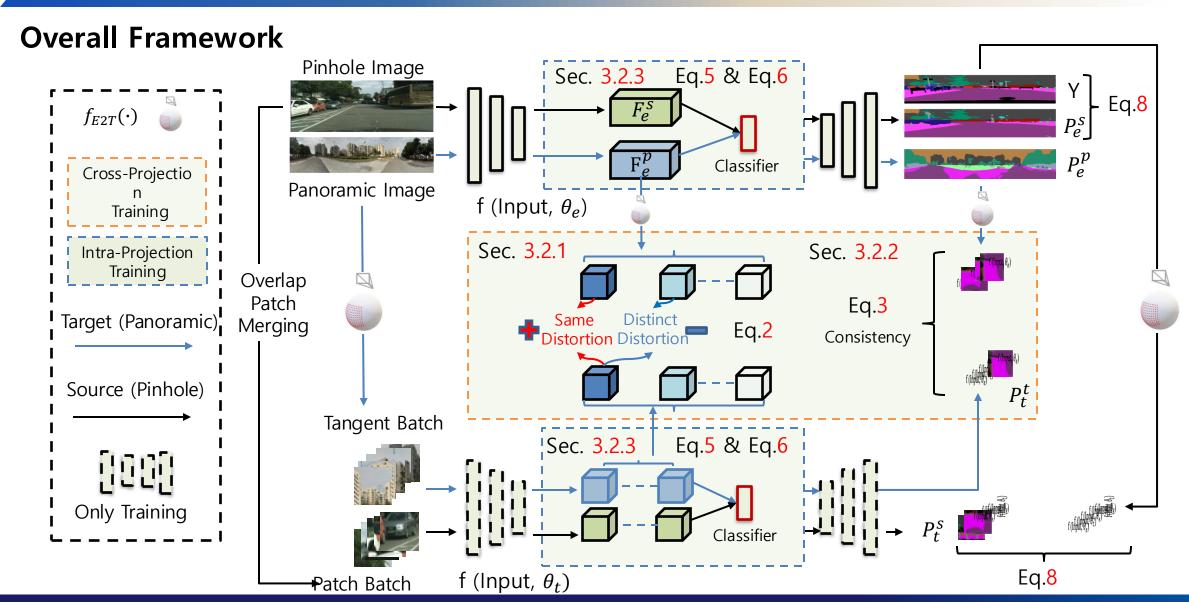
Use tangent projection (TP) along with ERP for alleviating the format gap caused by distortion.

Our Key Idea!

Dual-Path Framework **Cross-Projection Training** ERP & TP

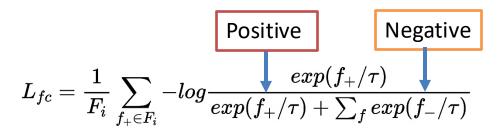
Intra-Projection Training

ERP path


TP path

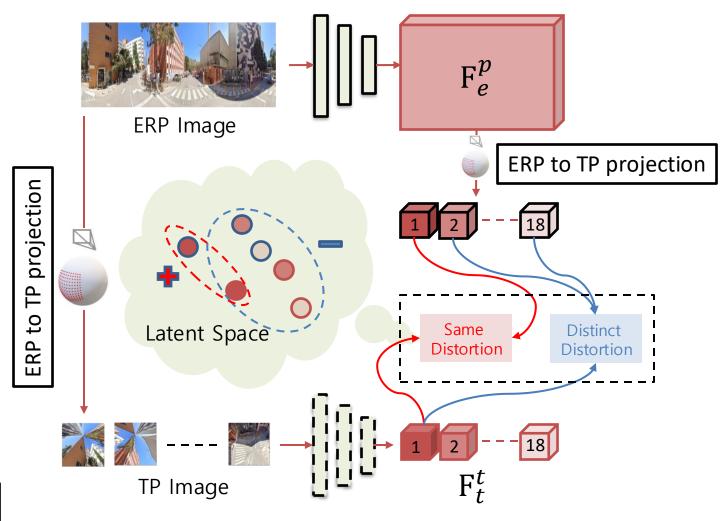
Feature level

• Tangent-wise feature contrastive traini

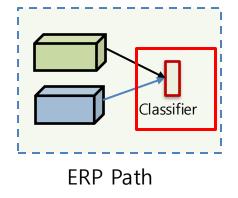

Prediction level

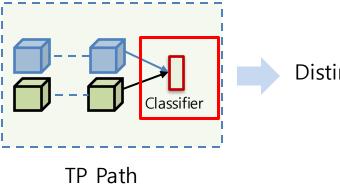
Prediction consistency training

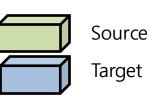
Cross Projection Training:


Tangent-wise feature contrastive training:

Prediction consistency training:

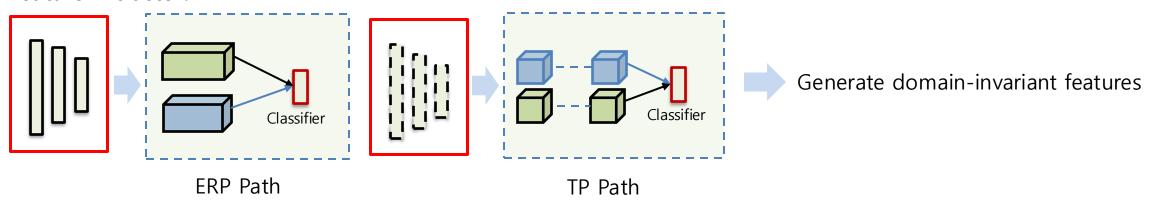

$$\mathcal{L}_{pc} = \sum_{i=1}^{18} f_{E2T}(P_{ei}^p) \log rac{f_{E2T}(P_{ei}^p))}{P_{ti}^t}$$


Choose 18 patches for prediction consistency

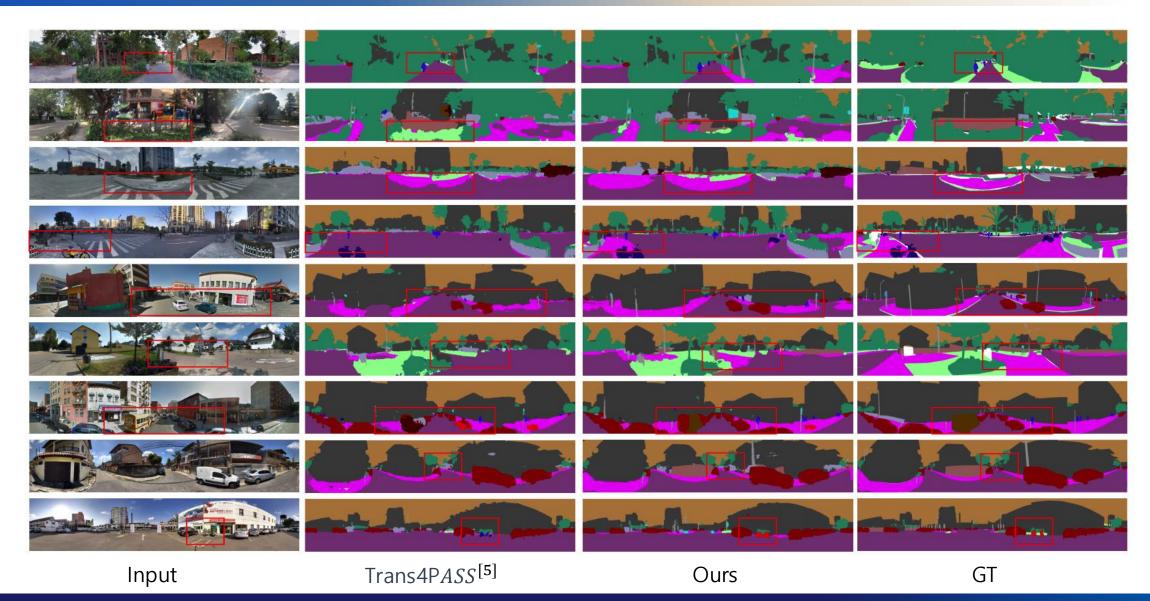


Intra Projection Training:

Classifier:



Distinguish features (distortion)


Feature Extractor:

Per-class results of the SoTA panoramic image semantic segmentation methods on DensePASS test set.

Method	mIoU	road	sidewalk	building	wall	fense	pole	traffic Light	traffic Sign	tegetation	terrain	sky	Person	rider	car	truck	pns	train	motorcycle	bicycle
ERFNet	16.65	63.59	18.22	47.01	9.45	12.79	17.00	8.12	6.41	34.24	10.15	18.43	4.96	2.31	46.03	3.19	0.59	0.00	8.30	5.55
PASS(ERFNet)	23.66	67.84	28.75	59.69	19.96	29.41	8.26	4.54	8.07	64.96	13.75	33.50	12.87	3.17	48.26	2.17	0.82	0.29	23.76	19.46
Omni-sup(ECANet)	43.02	81.60	19.46	81.00	32.02	39.47	25.54	3.85	17.38	79.01	39.75	94.60	46.39	12.98	81.96	49.25	28.29	0.00	55.36	29.47
P2PDA(Adversarial)	41.99	70.21	30.24	78.44	26.72	28.44	14.02	11.67	5.79	68.54	38.20	85.97	28.14	0.00	70.36	60.49	38.90	77.80	39.85	24.02
PCS	53.83	78.10	46.24	86.24	30.33	45.78	34.04	22.74	13.00	79.98	33.07	93.44	47.69	22.53	79.20	61.59	67.09	83.26	58.68	39.80
Trans4PASS-T †	53.18	78.13	41.19	85.93	29.88	37.02	32.54	21.59	18.94	78.67	45.20	93.88	48.54	16.91	79.58	65.33	55.76	84.63	59.05	37.61
Trans4PASS-S †	55.22	78.38	41.58	86.48	31.54	45.54	33.92	22.96	18.27	79.40	41.07	93.82	48.85	23.36	81.02	67.31	69.53	86.13	60.85	39.09
DPPASS-T(Ours)	55.30	78.74	46.29	87.47	48.62	40.47	35.38	24.97	17.39	79.23	40.85	93.49	52.09	29.40	79.19	58.73	47.24	86.48	66.60	38.11
DPPASS-S(Ours)	56.28	78.99	48.14	87.63	42.12	44.85	34.95	27.38	19.21	78.55	43.08	92.83	55.99	29.10	80.95	61.42	55.68	79.70	70.42	38.40

Huge boost to key targets (classes) for autonomous driving purpose.

Towards 360 Foundation Models for Segmentation!

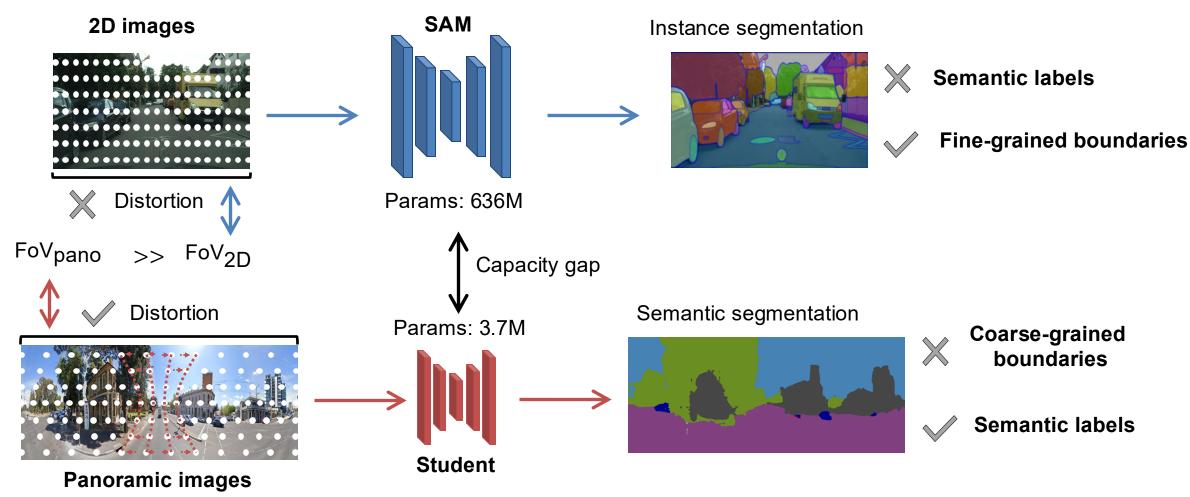
Knowledge transfer from Segment Anything Model (GoodSAM, CVPR 2024)

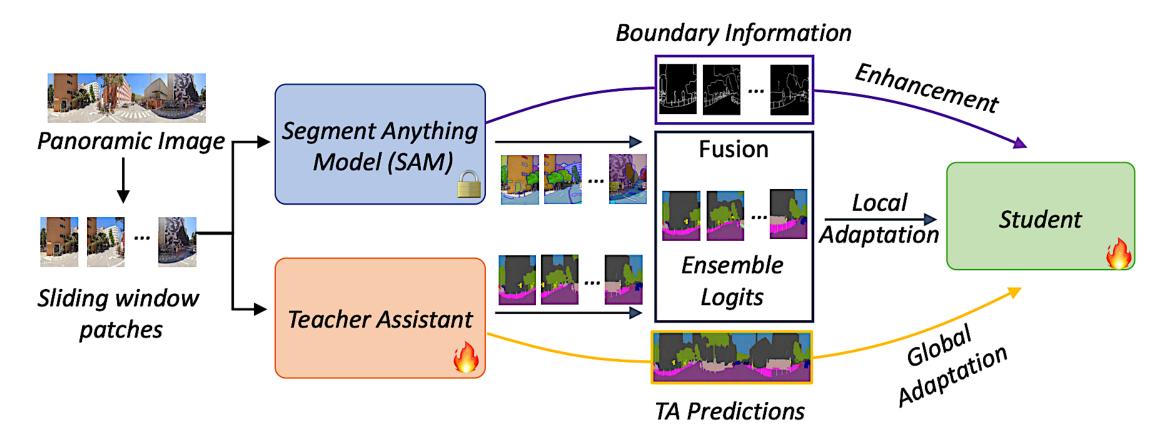
Emergence of Segment Anything Model (SAM)

Segment Anything Model (SAM): a new Al model from Meta Al that can "cut out" any object, in any image, with a single click.

SAM AMG is a prompt-free mode of SAM that automatically generates multi-level masks for all visible objects in an image — no manual prompts or training required.

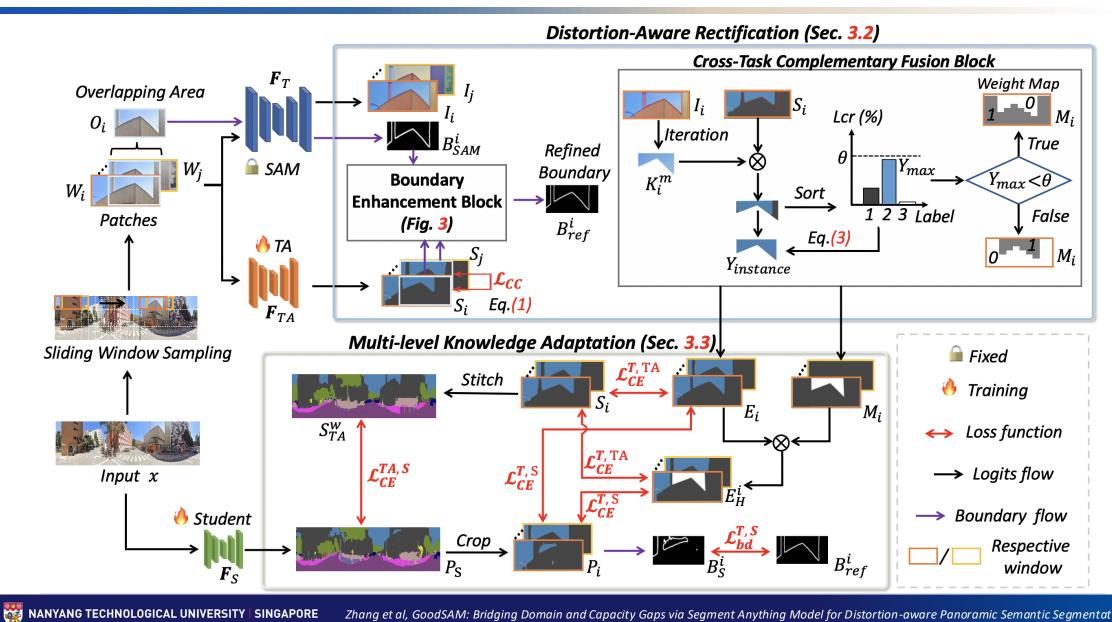
Prompt it with interactive points and boxes.


Generate multiple valid masks for ambiguous prompts.

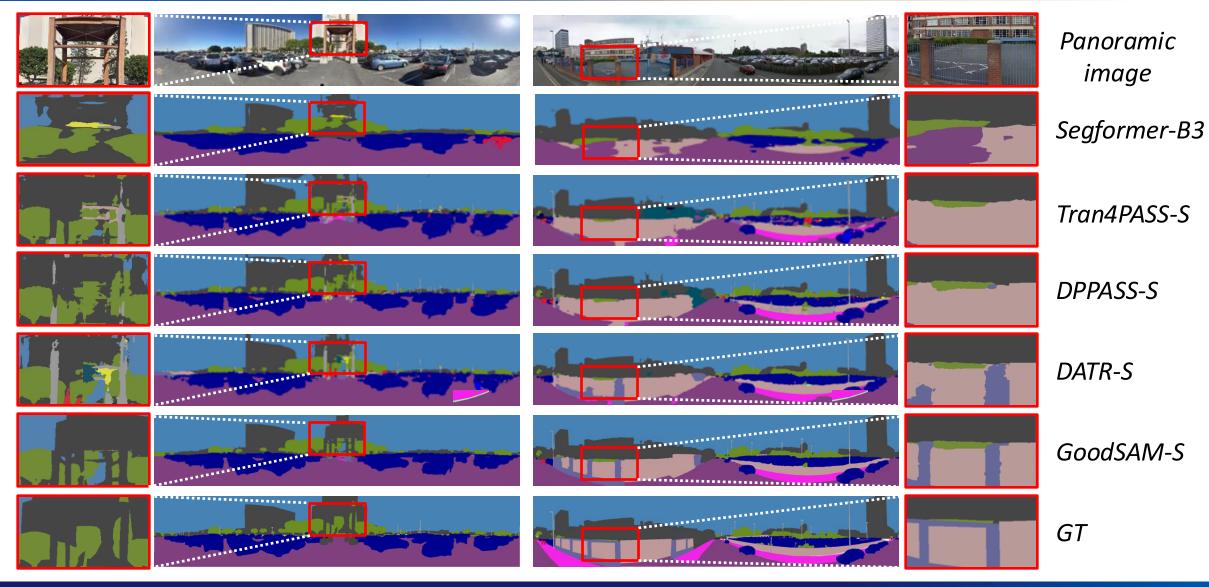

Automatically segment everything (AMG mode) in an image.

Emergence of Segment Anything Model (SAM)

How to transfer the instance segmentation knowledge from SAM to learn a more compact p anoramic semantic segmentation model (i.e., student) without requiring any labeled data?



Our Key Idea



Leveraging instance masks and boundary information provided by SAM, coupled with segmentation logits from the teacher assistant, to obtain reliable ensemble logits for knowledge adaptation to our student.

Two Technical Contributions

Visual Comparison

Quantitative results

Method	P. (M)	mIoU	Road	S.W.	Build.	Wall	Fence	Pole	Tr.L.	Tr.S.	Veget.	Terr.	Sky	Person	Rider	Car	Truck	Bus	Train	M.C.	B.C.
ERFNet [16]	_	16.65	63.59	18.22	47.01	9.45	12.79	17.00	8.12	6.41	34.24	10.15	18.43	4.96	2.31	46.03	3.19	0.59	0.00	8.30	5.55
PASS(ERFNet) [28]	-	23.66	67.84	28.75	59.69	19.96	29.41	8.26	4.54	8.07	64.96	13.75	33.50	12.87	3.17	48.26	2.17	0.82	0.29	23.76	19.46
Omni-sup(ECANet) [30]	-	43.02	81.60	19.46	81.00	32.02	39.47	25.54	3.85	17.38	79.01	39.75	94.60	46.39	12.98	81.96	49.25	28.29	0.00	55.36	29.47
P2PDA(Adversarial) [36]	-	41.99	70.21	30.24	78.44	26.72	28.44	14.02	11.67	5.79	68.54	38.20	85.97	28.14	0.00	70.36	60.49	38.90	77.80	39.85	24.02
PCS [33]	25.56	53.83	78.10	46.24	86.24	30.33	45.78	34.04	22.74	13.00	<u>79.98</u>	33.07	93.44	47.69	22.53	79.20	61.59	67.09	83.26	58.68	39.80
Trans4PASS-T [37]	13.95	53.18	78.13	41.19	85.93	29.88	37.02	32.54	21.59	18.94	78.67	45.20	93.88	48.54	16.91	79.58	65.33	55.76	84.63	59.05	37.61
Trans4PASS-S [37]	24.98	55.22	78.38	41.58	86.48	31.54	45.54	33.92	22.96	18.27	79.40	41.07	93.82	48.85	23.36	81.02	67.31	69.53	86.13	60.85	39.09
DPPASS-T [42]	14.0	55.30	78.74	46.29	87.47	48.62	40.47	35.38	24.97	17.39	79.23	40.85	93.49	52.09	<u>29.40</u>	79.19	58.73	47.24	86.48	66.60	38.11
DPPASS-S [42]	25.4	56.28	78.99	48.14	87.63	42.12	44.85	34.95	27.38	19.21	78.55	43.08	92.83	55.99	29.10	80.95	61.42	55.68	79.70	<u>70.42</u>	38.40
DATR-M [41]	4.64	52.90	78.71	48.43	86.92	34.92	43.90	33.43	22.39	17.15	78.55	28.38	93.72	52.08	13.24	77.92	56.73	59.53	93.98	51.52	34.06
DATR-T [41]	14.72	54.60	79.43	49.70	87.39	37.91	44.85	35.06	25.16	19.33	78.73	25.75	93.60	53.52	20.20	78.07	60.43	55.82	91.11	67.03	34.32
DATR-S [41]	25.76	56.81	80.63	51.77	87.80	44.94	43.73	37.23	25.66	21.00	78.61	26.68	93.77	54.62	29.50	80.03	67.35	63.75	87.67	67.57	37.10
GoodSAM-M(ours)	3.7	55.93	79.57	51.04	86.24	43.42	44.86	30.92	26.60	20.62	77.79	25.43	92.99	53.77	25.84	82.01	70.94	62.29	91.93	58.24	38.25
GoodSAM-T(ours)	14.0	<u>58.21</u>	80.06	53.29	<u>89.75</u>	44.91	<u>46.98</u>	31.13	<u>27.81</u>	19.83	79.58	25.72	93.81	<u>55.44</u>	26.99	<u>84.54</u>	<u>73.07</u>	68.41	<u>93.99</u>	67.36	43.39
GoodSAM-S(ours)	25.4	60.56	80.98	<u>52.96</u>	93.22	<u>48.17</u>	51.28	<u>33.51</u>	28.09	20.15	81.64	30.97	95.21	55.13	29.01	87.89	75.28	<u>69.37</u>	94.98	73.28	49.64

- Significant boost compared with existing methods.
- Generalization is not good in outdoor scenes.

Towards 360 Foundation Models for Segmentation!

Data and Geneeralization are always a challenge! (NeurlPS 2025, ICCV 2025)

Data is always a challenge

The scale and diversity of existing 360 video datasets remain limited due to:

- Long time to annotate because of large field of view.
- Distortion and object deformation, as shown in (a).
- Long time to annotate objects crossing border, as shown in (b).

(b)

Our Dataset (Leader360V)- NeurIPS 2025

Large scale (10K+)

Our Dataset (Leader360V)

Real-world data

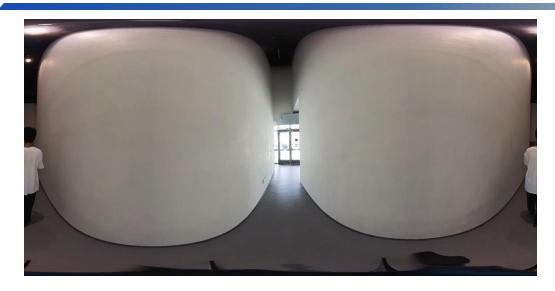
High scene diversity

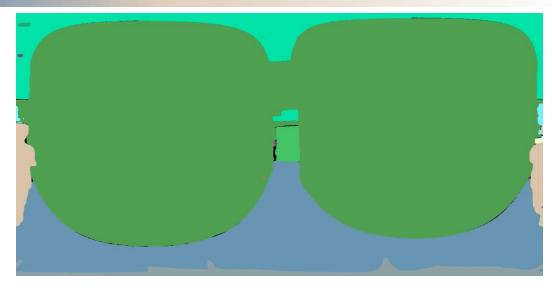
Covering 198 object types

Indoor

Outdoor

Video Samples





Video Samples

Raw video

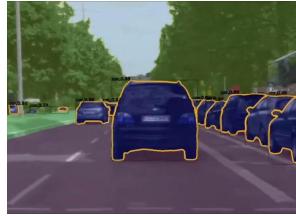
Annotation

E-SAM: Training-Free Segment Every Entity Model

Weiming Zhang¹, Dingwen Xiao¹, Lei Chen^{1,2}, Lin Wang³

Thu 13:30- 17:00

Poster #7238 ©



Why Entity Segmentation Matters?

☐ The class-agnostic nature makes ES well-suited to various open-world applications:

Video Tracking

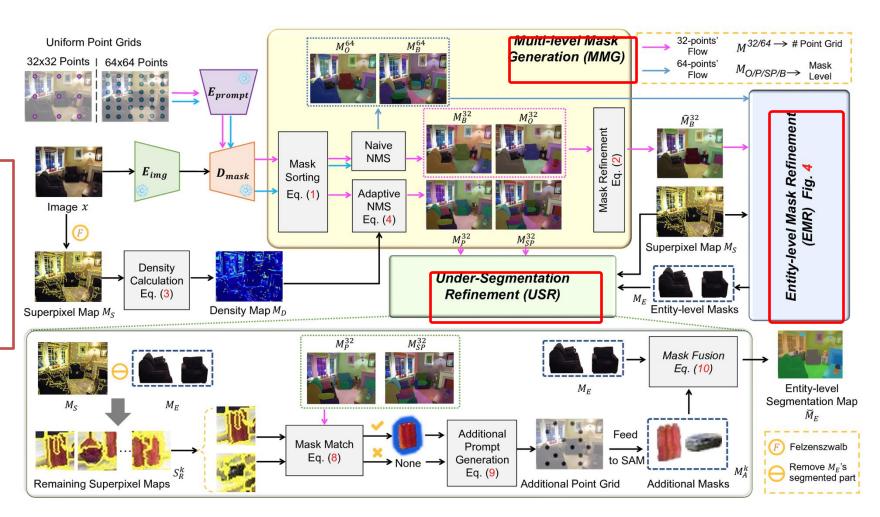
Image Inpainting

Autonomous Driving

Robotics Perception

Entity Segmentation provides rich mask proposals for various open-world applications.

The left video demo is adapted from Track-Anything: Segment and Track Anything in Videos [Gao et al., 2023], available at https://github.com/gaomingqi/Track-Anything. The middle video fragment is taken from the demo video available at YouTube (https://www.youtube.com/watch?v=cC6IR7ScecU).

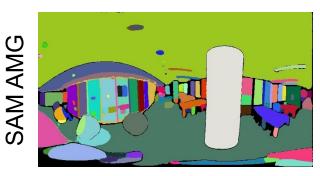

The right video segment is adapted from the official Track-Anything demo available at https://www.youtube.com/watch?v=GIXs6TAaPM8.

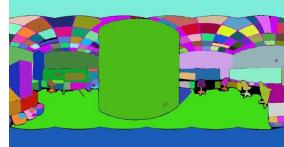
Key Question & Idea

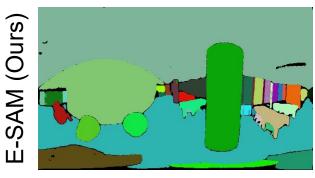
How can we efficiently and effectively achieve ES of all entities in an image?

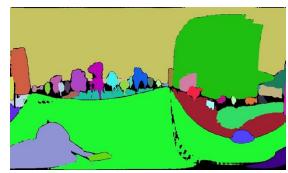
Key Idea

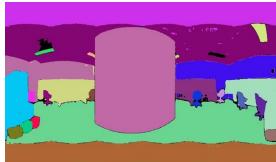
Hierarchical self-refining masking m echanism that transforms SAM's coa rse, multi-granular masks into clean, entity-level segmentations — all in a training-free manner.

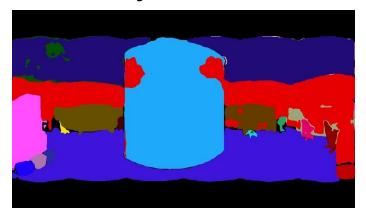

Visual Results from Leader360V Dataset





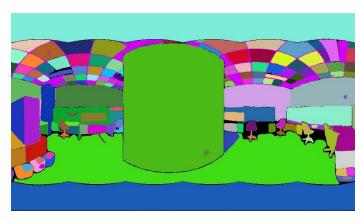


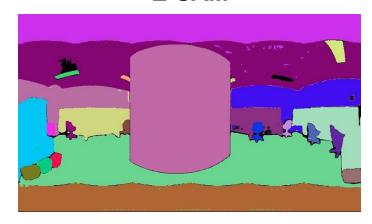




More Open-World Examples:


Image


Entity Framework


CropFormer

SAM

E-SAM

Takeaways and Some of My Thoughts

Takeaways

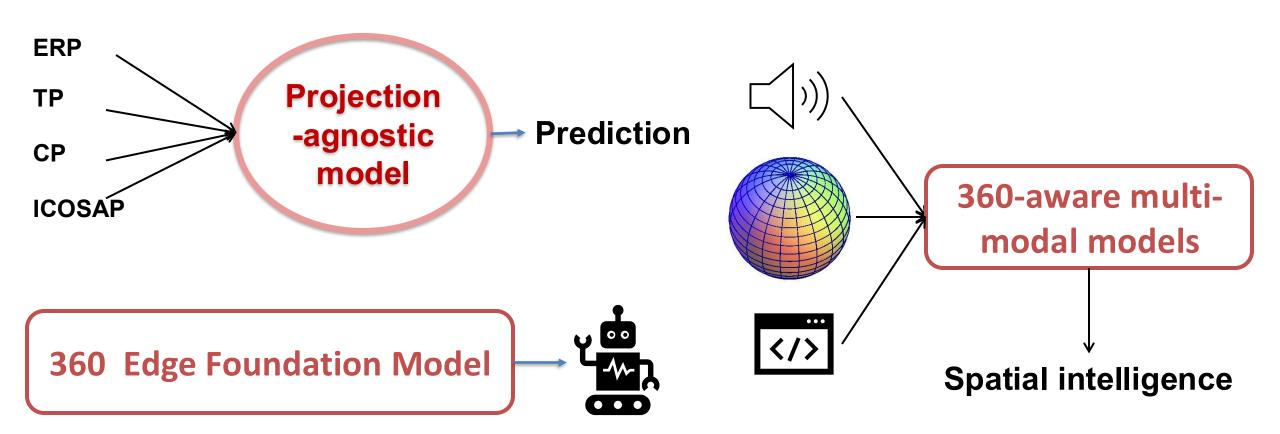
1

360 cameras more advantageous in their application potential.

- 360 data are with multi-projection properties with larger field-of-view (FoV).
- By principle, one 360 camera can cover the whole scene.

2

Projection fusion is a way to address distortion and learn complete visual info


- Uni-projection is trapped by distortion, disconnection, and overlap issues.
- Fusion has to deal with geometric and semantic mismatch issues.

3

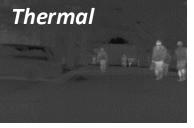
Handling data shortage is crucial; transfer learning is important.

- Domain adaptation or knowledge distillation are beneficial to overcome data issues.
- Learning scalable 360 foundation models needs real-world data.

Future Directions

linwang@ntu.edu.sg www.linkedin/in/addison-lin-wang-62542b222/

Thank you! Q/A


Distortion issues are still

Challenges for Embodied Intelligent Systems

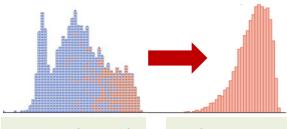
Multi-source Heterogenous Data

External Challenges

Internal Challenges

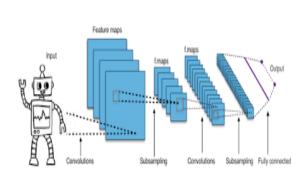
Dynamically Varying Env.

Adverse Visual Conditions



Dynamic range/
Noise

Unideal Sensor Match


Complex Open-world Env.

Normal Condi

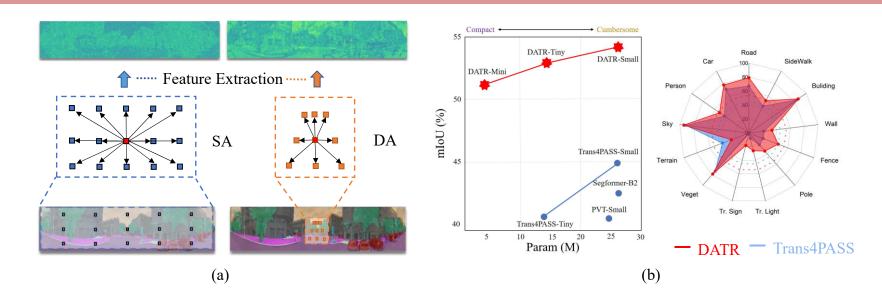
Adverse Co ndition

Cumbersome Model Size

Limited Computation

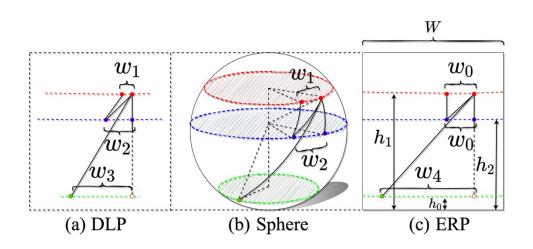
TFLOPS (FP16)

Edge Device


NVIDIA JETSON JETSON Xavier NX TX2

Distortion Matters

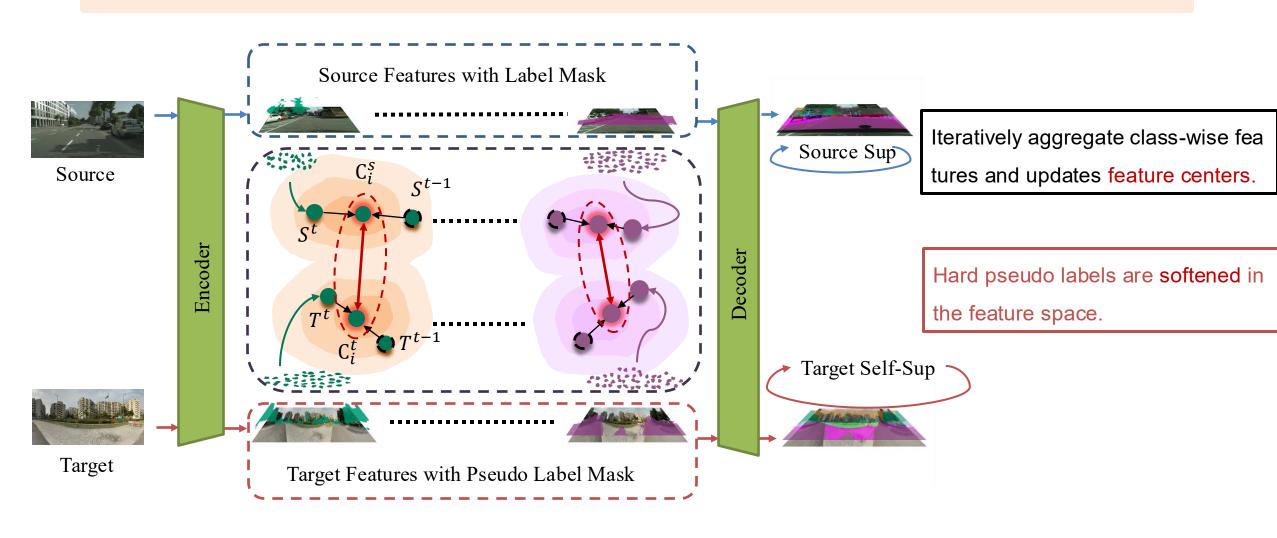
Efficient backbone and algorithm for UDA in Panoramic Semantic Segmentation


We find that the pixels' neighboring region of ERP indeed introduce less distortion


Distortion-aware Attention (DA) & Class-wise Feature Aggregation (CFA)

It is challenging to address distortion issues

Distortion-aware Attention: Why we focus on the neighboring region?



It is easier to capture the positional distribution am ong the pixels by reducing the receptive field.

This Relative Positional Encoding captures the distribution of different neighboring pixels.

What is challenging?

Class-wise Feature Aggregation: Why class-wise feature aggregation?

