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Can we combine model 
distillation with policy learning?



Distillation module

• LKD Aligns soft targets 
(semantic space)

• L1 Aligns intermediate 
representations (feature 
space)  

• LGT Anchors final task 
objective (logit space).



Policy module

Task-specific policy modules



Policy module

Task-specific policy modules

Pk​ = Softmax((logzk​+Gk​)/𝛕)

Unify continuous (distillation) and discrete (policy) 

learning streams via joint optimization over 

differentiable sampling and backpropagation 

through modality gates.



Task specific 
student model 
is distilled from 
the heavy 
teacher model. 
The distillation 
objective 
optimizes three 
loss functions L1, 
LKD, LGT

Stage 1: Distillation - stabilizes KT

Trainable

Frozen



Stage 2: Policy learning with frozen student - isolates policy 
gradients, avoiding feature drift

Trainable

Frozen

In this stage the 
policy module is 
trained keeping 
the distilled 
student model 
fixed. This results 
in stable training 
and quicker 
convergence!  



Stage 3: Policy and distillation update - LΘ= η1LΠ ​+ η2LΦ

Trainable

Frozen

In this stage both 
the policy module 
and the distilled 
student is trained 
in tandem. This is 
the final training 
stage!



Egocentric Action Recognition Results



EPIC-Kitchens 100 example

egoadapt_sample.mp4

http://drive.google.com/file/d/1QRUFLI7FGIodSxysABUevgSF49edYXBG/view


Audio Preview

A person doing kitchen chores. Opens 
the tap, washes dishes, cleans counter. 

egoadapt_audio.mp3

http://drive.google.com/file/d/1IOymyoJyZJb6h2L_aAQzPMitmjqBjLz1/view


Only the audio is 
passed to the policy 
network. Which 
‘previews’ the audio 
signal to identify 
potentially distinct 
events in the video!  

egoadapt_audio.mp3

http://drive.google.com/file/d/1IOymyoJyZJb6h2L_aAQzPMitmjqBjLz1/view


2 sec 14 sec

28 sec

Distinct audio event prediction by audio previewing
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28 sec

Most salient K frames selected 



Predicted action: Place cup in the sink

2 sec 14 sec

28 sec

The selected frames are fed 
to the student model for 
Action Recognition



Predicted action: Start tap
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Predicted action: Wash towel

The selected frames are fed 
to the student model for 
Action Recognition

2 sec 14 sec

28 sec



Active Speaker Localization Results



Non-active speaker Active speaker Model prediction

output_video_full_w_seleted_frame_w_audio _13_t0_38_sec_v2.mp4

Frame-wise Comparison Results

http://drive.google.com/file/d/1TrX3kgK_PrQsrf3DagKCeyQ0ugxBt37D/view


Results: Performance
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Ablation Results



Qualitative Results: Action Recognition

The green and red boxes represent correct and incorrect predictions, respectively. EgoAdapt 
picks the most informative frame to predict the ‘Noun’ classes, which is subsequently used to 

predict the action



Qualitative Results: Active Speaker Localization

The red/blue boxes indicate active/non-active speakers, and the red heatmap indicates 
model prediction. EgoAdapt can make correct predictions for scenes with motion blur (col. 

4), partial vision (col. 5), and multi-speakers (col. 2, 5). The red/green circles represent the 
discarded and selected audio channels.



On device implementation

Results: Efficiency
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On device implementation

Results: Efficiency

Reduction in:
● GMACs by up to 89.09%
● Parameters up to 82.02%
● Energy up to 9.6×



Questions?

Thank you!

Project Page
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