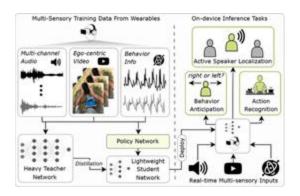


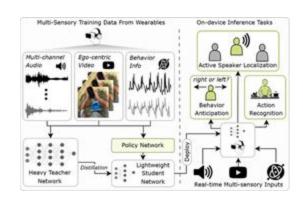
EgoAdapt: A Joint Distillation and Policy Learning Framework for Efficient Multisensory Egocentric Perception

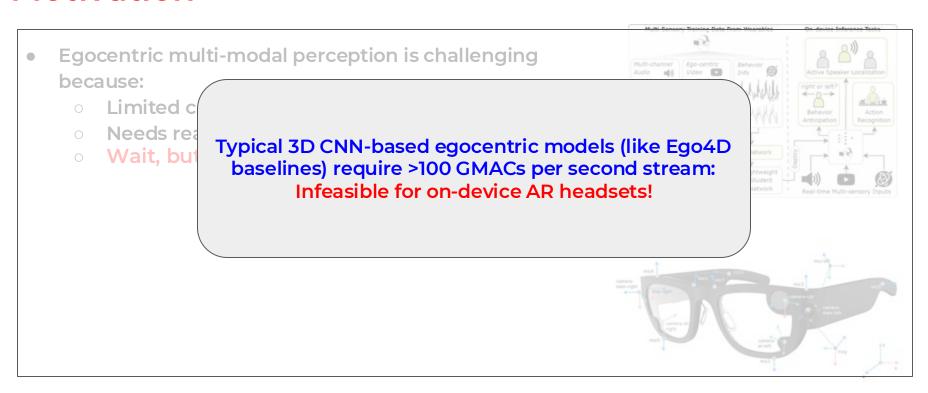

 ¶Wed 22 Oct | 11:15 a.m. HST − 1:15 p.m. HST | Poster Session 3 | Exhibit Hall I #983

<u>Sanjoy Chowdhury</u>^{1,2}, Subrata Biswas^{2,3}, Sayan Nag⁴, Tushar Nagarajan², Calvin Murdock², Ishwarya Ananthabhotla², Yijun Qian², Vamsi Krishna Ithapu², Dinesh Manocha¹, Ruohan Gao^{1,2}

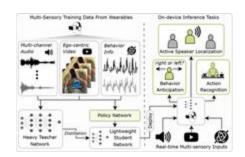
¹University of Maryland, College Park, ²Meta, ³Worcester Polytechnic Institute, ⁴University of Toronto

Oct 19th 2025


- Egocentric multi-modal perception is challenging because:
 - Limited compute in wearable devices
 - Needs real-time processing



- Egocentric multi-modal perception is challenging because:
 - Limited compute in wearable devices
 - Needs real-time processing
 - Wait, but performance is important too!!

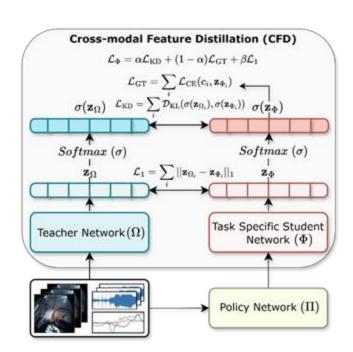


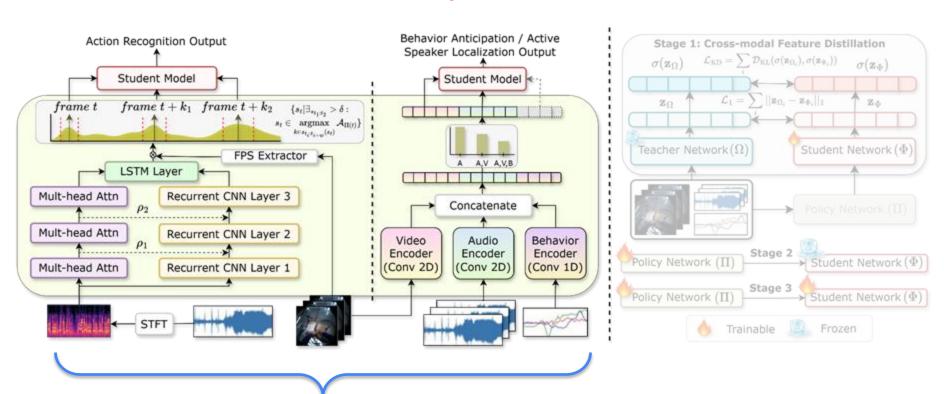
- Egocentric multi-modal perception is challenging because:
 - Limited compute in wearable devices
 - Needs real-time processing
 - Wait, but performance is important too!!

- **Key Questions?**
 - Are all of them important at all the time?
 - What all modalities do we leverage for optimal efficiency?
 - What is the smartest way to switch between the modalities at our disposal?

- Egocentric multi-modal perception is challenging because:
 - Limited compute in wearable devices
 - o Ne
 - o **W**

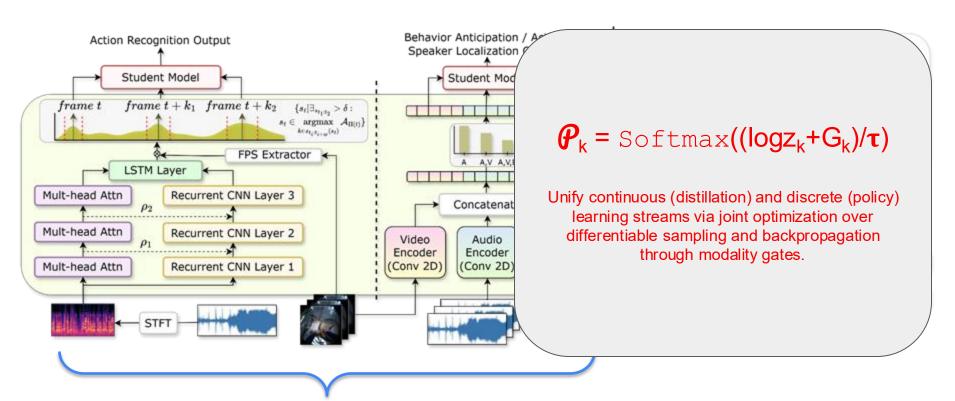
Can we combine model distillation with policy learning?


- Key Questions?
 - Are all of them important at all the time?
 - What all modalities do we leverage for optimal efficiency?
 - What is the smartest way to switch between the modalities at our disposal?

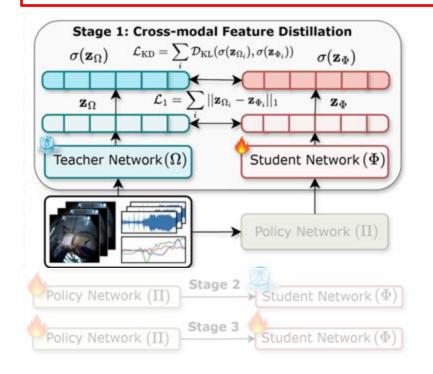


Distillation module

- £_{KD} Aligns soft targets (semantic space)
- 🕰 Aligns intermediate representations (feature space)
- \mathcal{L}_{CT} Anchors final task objective (logit space).



Policy module

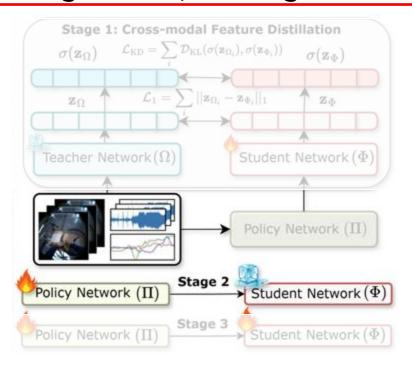

Task-specific policy modules

Policy module

Task-specific policy modules

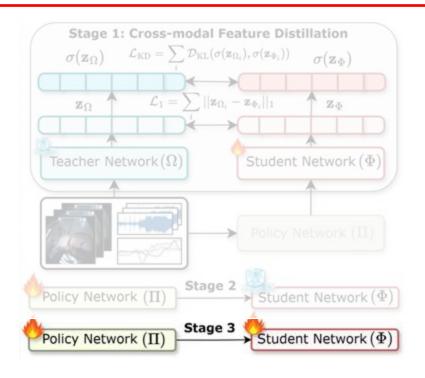
Stage 1: Distillation - stabilizes KT

Task specific student model is distilled from the heavy teacher model. The distillation objective optimizes three loss functions \mathcal{L} , \mathcal{L}_{KD} , \mathcal{L}_{GT}



Trainable

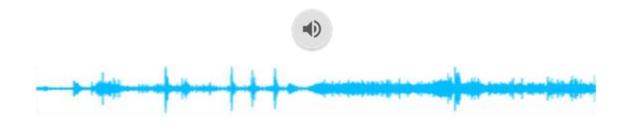
Frozen

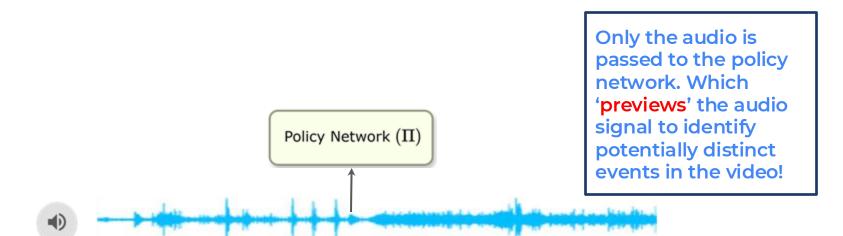

Stage 2: Policy learning with frozen student - isolates policy gradients, avoiding feature drift

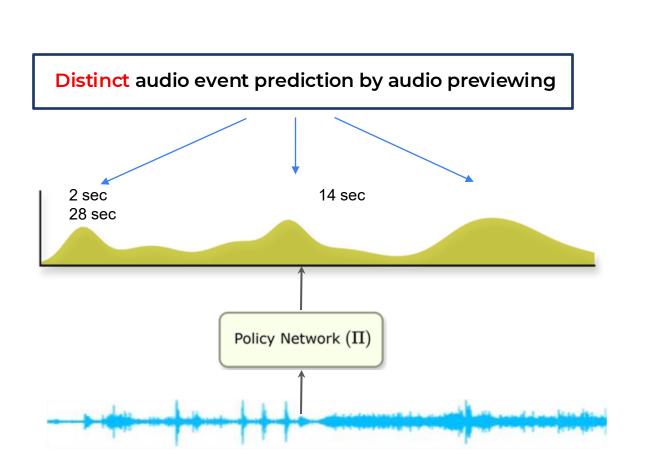
In this stage the policy module is trained keeping the distilled student model fixed. This results in stable training and quicker convergence!

Stage 3: Policy and distillation update - \mathcal{L}_{θ} = $\eta_1 \mathcal{L}_{\Pi}$ + $\eta_2 \mathcal{L}_{\Phi}$

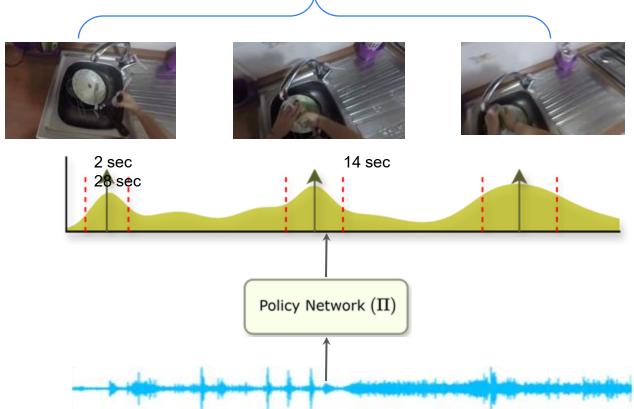
In this stage both the policy module and the distilled student is trained in tandem. This is the final training stage!

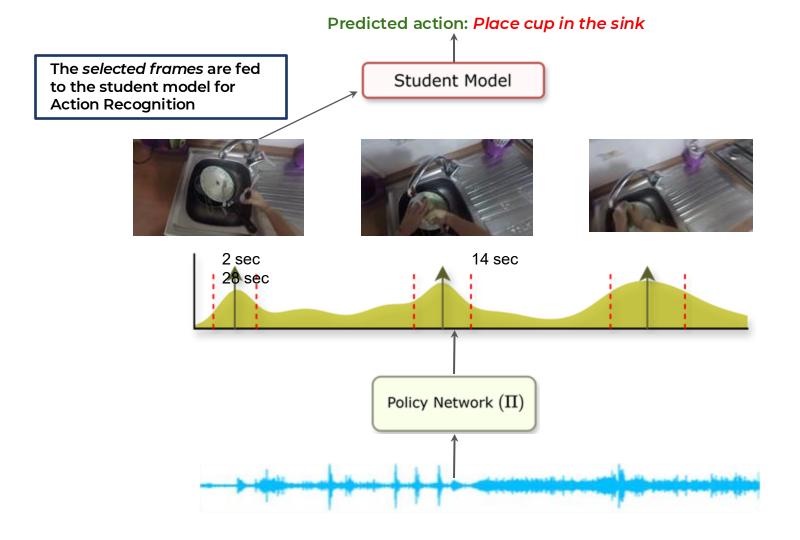


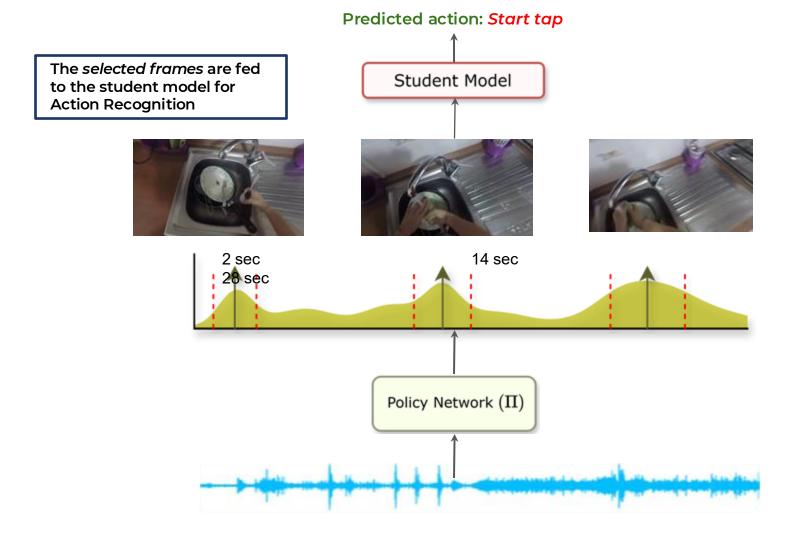


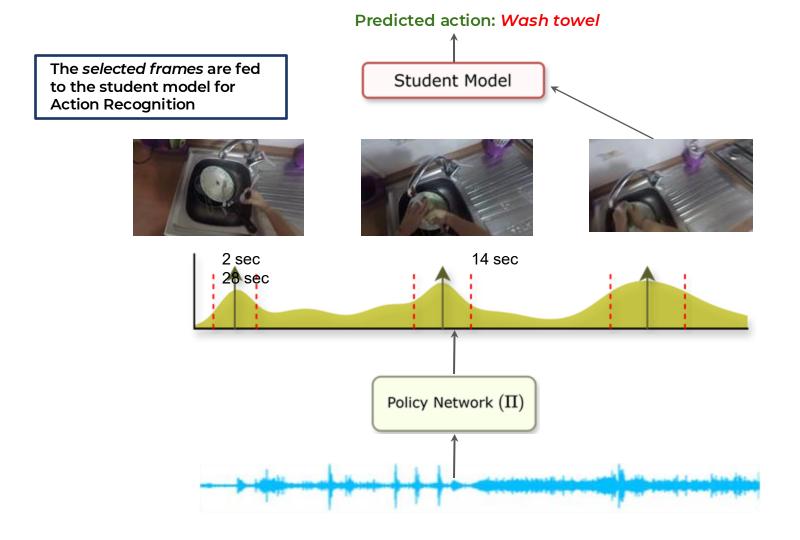

EPIC-Kitchens 100 example

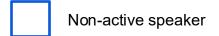
Audio Preview

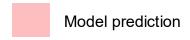

A person doing kitchen chores. Opens the tap, washes dishes, cleans counter.










Active Speaker Localization Results

Frame-wise Comparison Results

Results: Performance

Method	Input resolution ↓	Verb†	Noun†	Action†	GMACs.
MoViNet-A6 [37]	320×320	72.24	57.31	47.79	79.35
TBN [36]	224×224	66.03	47.24	36.72	75.73
AdaFuse [48]	224 × 224	65.52	55.75	50.16	95.84
Ego-only [68]	224×224	73.33	59.48	52.59	507.39
ListenToLook [18]	224 × 224	61.27	52.52	39.85	380.46
AdaMML [50]	224 × 224	64.95	55.27	41.73	277.76
VS-VIO [78]	224 × 224	61.37	52.21	38.07	106.97
TIM AV [5]	224 × 224	77.19	67.22	57.57	26,62
EGOADAPT w/o TeMPLe	224 × 224	68.34	59.02	50.88	5.79
EGOADAPT	224 × 224	76.65	66.83	56.74	7.14

Table 1. Egocentric action recognition performance of baselines and other other SOTA on EPIC-Kitchens. We report the top-1 accuracy for verb, noun, and action (%).

Method	mAP†	GMACs.	Params (M).	Energy (J) \
ListenToLook [18]	71.28	12.452	17.34	1.032
AdaMML [50]	76.90	10.681	13.61	0.913
VS-VIO [78]	72.31	7.873	5.97	0.266
MUST [80]	89.88	0.642	2.17	0.029
EGOADAPT w/o TeMPLe	78.59	0.077	0.36	0.003
EGOADAPT	89.74	0.070	0.39	0.003

Table 2. Performance of active speaker localization on Easy-Com. We compare the mAPs (in %) of various baselines in the visual field of view. Most of these tests use 4-channel audio. EGOADAPT can dynamically choose optimal number of channels.

Method		Gaze			Orientation			Trajectory		Energy (D.)
	$T_{300~\mathrm{ms}}$	$T_{500~ms}$	$T_{700 \text{ ms}}$	$T_{300 ms}$	T500 mm	$T_{700\; ms}$	$T_{300~ms}$	T500 ms	$T_{700 \; ms}$	Energy (J) ‡
ListenToLook [18]	13.68	17.24	19.02	5.47	8.92	11.36	13.54	15.11	17.02	0.512
AdaMML [50]	12.16	16.70	18,31	5.41	8.76	11.24	13.27	14.10	16.28	0.296
VS-VIO [78]	14.83	19.27	20.54	8.41	12.44	13.19	15.71	16.92	18.53	0.097
MuST _{AVB} [80]	9.17	12.15	14.75	4.78	7.36	9.90	9.96	12.38	13.95	0.029
EGOADAPT w/o TeMPLe	10.95	14.69	16.18	5.20	7.88	10.81	11.50	13.66	12.98	0.003
EGOADAPT	8.53	11.93	14.58	4.61	7.39		9.58	11.97	13.36	0.003

Table 3. Comparison of behavior anticipation errors on the AEA Dataset. The energy values (in J) are reported by aggregating over three time windows ($T_{300~\mathrm{ms}}$, $T_{500~\mathrm{ms}}$, and $T_{700~\mathrm{ms}}$).

Results: Performance

Method	Input resolution ↓	Verb†	Noun†	Action↑	GMACs.
ListenToLook [18]	224 × 224	61.27	52.52	39.85	380.46
AdaMML [50]	224 × 224	64.95	55.27	41.73	277.76
VS-VIO [78]	224 × 224	61.37	52.21	38.07	106.97
TIM AV [5]	224 × 224	77.19	67.22	57.57	26.62
EGOADAPT w/o TeMPLe	224 × 224	68.34	59.02	50.88	5.79
EGOADAPT	224 × 224	76.65	66.83	56.74	7.14

Table 1. Egocentric action recognition performance of baselines and other other SOTA on EPIC-Kitchens. We report the top-1 accuracy for verb, noun, and action (%).

Method	mAP†	GMACs1	Params (M)	Energy (J)
MAVSLC+R 35	86.32	6.852	16.13	0.698
LocoNet [72]	71,83	3.364	34,30	1.104
Sync-TalkNet [77]	65.86	3.788	32.91	0.985
ASD-Trans [9]	70.13	3.621	15.03	0.482
LW-ASD [42]	71.60	1.280	5.36	0.145
ListenToLook [18]	71.28	12.452	17.34	1,032
AdaMML [50]	76.90	10.681	13.61	0.913
VS-VIO [78]	72.31	7.873	5.97	0.266
MUST [80]	89.88	0.642	2.17	0.029
EGOADAPT w/o TeMPLe	78.59	0.077	0.36	0.003
EGOADAPT	89.74	0.070	0.39	0.003

Table 2. Performance of active speaker localization on Easy-Com. We compare the mAPs (in %) of various baselines in the visual field of view. Most of these tests use 4-channel audio. EGOADAPT can dynamically choose optimal number of channels.

Method		Gaze			Orientation			Trajectory		Energy (D.)
	$T_{300~\mathrm{ms}}$	$T_{500~ms}$	$T_{700 \text{ ms}}$	$T_{300 ms}$	T500 mm	$T_{700\; ms}$	$T_{300~ms}$	T500 ms	$T_{700 \; ms}$	Energy (J) ‡
ListenToLook [18]	13.68	17.24	19.02	5.47	8.92	11.36	13.54	15.11	17.02	0.512
AdaMML [50]	12.16	16.70	18,31	5.41	8.76	11.24	13.27	14.10	16.28	0.296
VS-VIO [78]	14.83	19.27	20.54	8.41	12.44	13.19	15.71	16.92	18.53	0.097
MuST _{AVB} [80]	9.17	12.15	14.75	4.78	7.36	9.90	9.96	12.38	13.95	0.029
EGOADAPT w/o TeMPLe	10.95	14.69	16.18	5.20	7.88	10.81	11.50	13.66	12.98	0.003
EGOADAPT	8.53	11.93	14.58	4.61	7.39		9.58	11.97	13.36	0.003

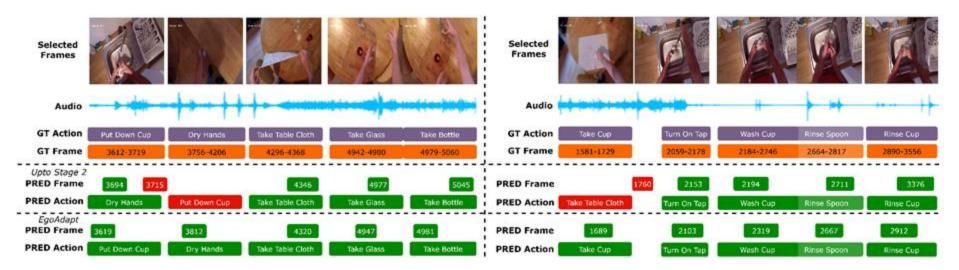
Table 3. Comparison of behavior anticipation errors on the AEA Dataset. The energy values (in J) are reported by aggregating over three time windows ($T_{300~\mathrm{ms}}$, $T_{500~\mathrm{ms}}$, and $T_{700~\mathrm{ms}}$).

Results: Performance

Method	Input resolution ↓	Verb†	Noun†	Action↑	GMACs.
ListenToLook [18]	224 × 224	61.27	52.52	39.85	380.46
AdaMML [50]	224 × 224	64.95	55.27	41.73	277.76
VS-VIO [78]	224 × 224	61.37	52.21	38.07	106.97
TIM AV [5]	224 × 224	77.19	67.22	57.57	26.62
EGOADAPT w/o TeMPLe	224 × 224	68.34	59.02	50.88	5.79
EGOADAPT	224 × 224	76.65	66.83	56.74	7.14

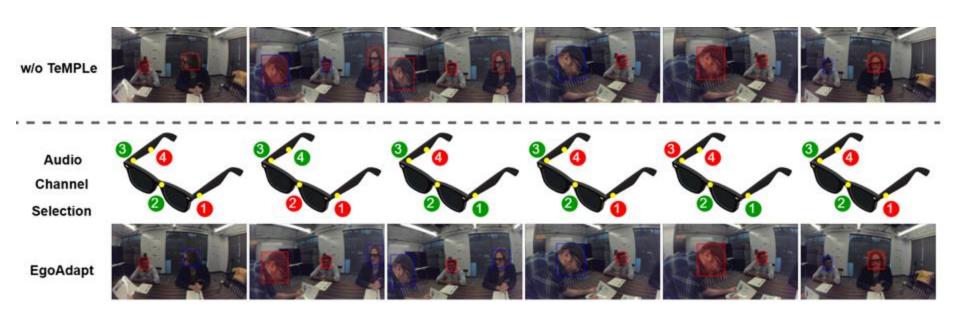
Table 1. Egocentric action recognition performance of baselines and other other SOTA on EPIC-Kitchens. We report the top-1 accuracy for verb, noun, and action (%).

Method	mAP [↑]	GMACs.	Params (M).	Energy (J)
ListenToLook [18]	71.28	12.452	17.34	1.032
AdaMML [50]	76.90	10.681	13.61	0.913
VS-VIO [78]	72.31	7.873	5.97	0.266
MUST [80]	89.88	0.642	2.17	0.029
EGOADAPT w/o TeMPLe	78.59	0.077	0.36	0.003
EGOADAPT	89.74	0.070	0.39	0.003

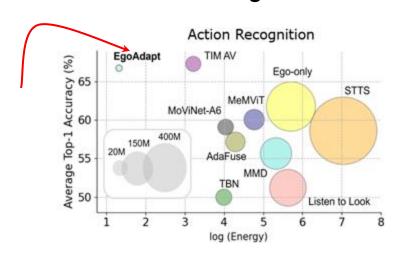

Table 2. Performance of active speaker localization on Easy-Com. We compare the mAPs (in %) of various baselines in the visual field of view. Most of these tests use 4-channel audio. EGOADAPT can dynamically choose optimal number of channels.

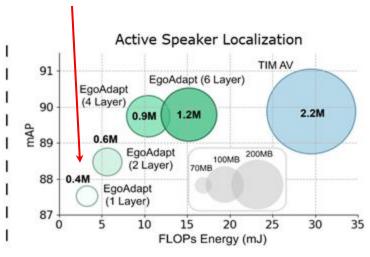
Method		Gaze			Orientation	n		Trajectory		E(D.)
Method	T300 ms	T500 ms	T700 ms	T300 ms	T500 mm	T700 ms	T300 ms	T500 ms	T700 ms	Energy (J) ‡
MultitaskGP [20]	11.42	15.59	18.40	4,70	9.28	12.27	13.75	17.86	20.02	0.056
GazeMLE [40]	10.74	14.37	18,14	4.68	9.11	12.03	14.33	16.02	18.64	1.371
GLC [39]	10.21	14.66	17,80	4.76	8.98	11.70	13.15	15.39	17.41	0.972
ListenToLook [18]	13.68	17.24	19.02	5.47	8.92	11.36	13.54	15.11	17.02	0.512
AdaMML [50]	12.16	16.70	18,31	5.41	8.76	11.24	13.27	14.10	16.28	0.296
VS-VIO [78]	14.83	19.27	20.54	8.41	12.44	13.19	15.71	16.92	18.53	0.097
MuST _{AVB} [80]	9.17	12.15	14.75	4.78	7.36	9.90	9.96	12.38	13.95	0.029
EGOADAPT w/o TcMPLc	10.95	14.69	16.18	5.20	7.88	10.81	11.50	13.66	12.98	0.003
EGOADAPT	8.53	11.93	14.58	4.61	7.39	9.91	9.58	11.97	13.36	0.003

Table 3. Comparison of behavior anticipation errors on the AEA Dataset. The energy values (in J) are reported by aggregating over three time windows ($T_{300 \text{ ms}}$, $T_{500 \text{ ms}}$, and $T_{700 \text{ ms}}$).

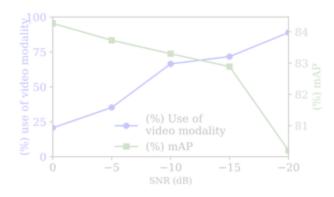

Ablation Results

Qualitative Results: Action Recognition

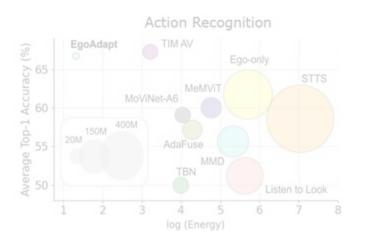


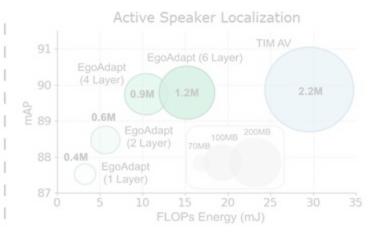

The green and red boxes represent correct and incorrect predictions, respectively. EgoAdapt picks the most informative frame to predict the 'Noun' classes, which is subsequently used to predict the action

Qualitative Results: Active Speaker Localization

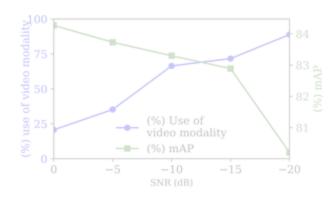


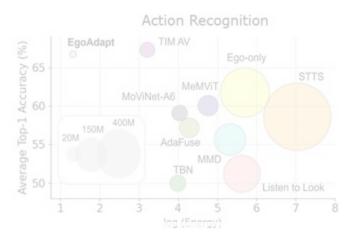
The red/blue boxes indicate active/non-active speakers, and the red heatmap indicates model prediction. EgoAdapt can make correct predictions for scenes with motion blur (col. 4), partial vision (col. 5), and multi-speakers (col. 2, 5). The red/green circles represent the discarded and selected audio channels.

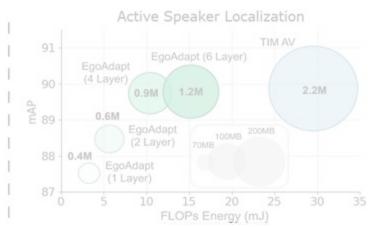




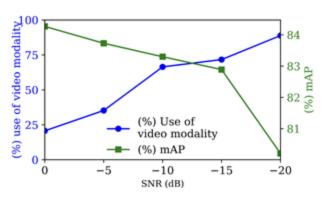
Precision	Mod	lality	m AD A	Down (mW)	Exec.		
Level	Level A	evel A V		mAP ↑	Power (mW) ↓	Time ↓	
4 bit	1	Х	77.14	7.38	0.12		
4 DIL	1	/	78.92	9.94	0.21		
0 1.14	1	X	80.56	11.37	0.33		
8 bit	1	/	81.13	14.90	0.42		
16 bit	1	X	84.39	19.11	0.59		
10 DIL	1	/	85.74	23.06	0.68		
32 bit	1	X	83.22	29.71	0.89		
32 DIT	1	/	89.74	34.39	1.00		

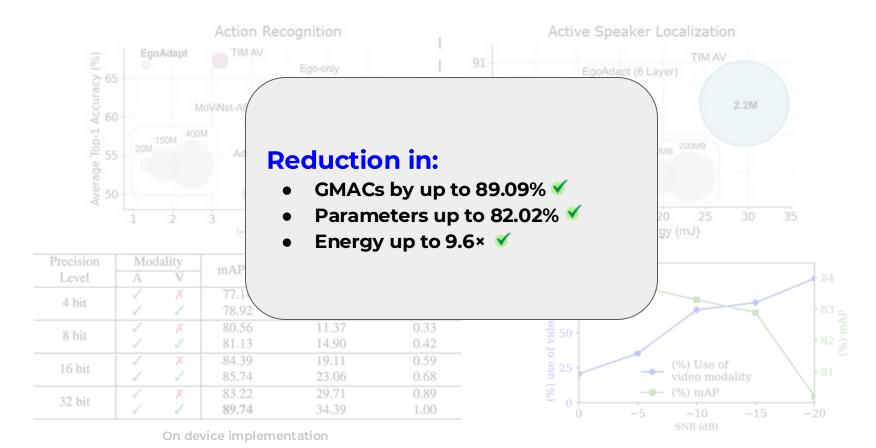

On device implementation





Precision Level	Mod	dality V	mAP ↑	Power (mW) ↓	Exec. Time ↓
410	/	Х	77.14	7.38	0.12
4 bit	/	1	78.92	9.94	0.21
0 1.:	1	X	80.56	11.37	0.33
8 bit	1	1	81.13	14.90	0.42
16 bit	1	X	84.39	19.11	0.59
10 011	/	1	85.74	23.06	0.68
32 bit	1	Х	83.22	29.71	0.89
32 bit	/	1	89.74	34.39	1.00


On device implementation



Precision	Mod	lality	A D A	Downer (mWV)	Exec.	
Level	A	V	mAP↑	Power (mW) ↓	Time ↓	
4.1.16	1	X	77.14	7.38	0.12	
4 bit	1	1	78.92	9.94	0.21	
0 1.14	1	X	80.56	11.37	0.33	
8 bit	1	1	81.13	14.90	0.42	
16 14	1	X	84.39	19.11	0.59	
16 bit	1	1	85.74	23.06	0.68	
22 1-14	1	X	83.22	29.71	0.89	
32 bit	1	/	89.74	34.39	1.00	

On device implementation

Project Page

Questions?